

Submitted By : Namarta Class : BSc (Non Medical) Semester 3rd Roll No. : 5210 Submitted to : Hemant Kumari Mam

Simplex method

Introduction :

Simplex Method is a more general method suitable for solving LPP with a large number of variables.

This method was developed by George Dantzig in 1947 and was made available

Slack variables: The ≤ type inequations can be transformed into equations by the addition of nonnegative variables, say s₁,s₂ etc, known as Slack variables. Surplus variables: The ≥ type inequality, subtracted from the left hand side constraint to convert the constraint into equally is called Surplus variables.

3) Artificial variables : If x_1 and x_2 are set equal

to zero, s_1 and s_2 turns out to be negative violating the nonnegative restriction. Therefore, to overcome this, we introduce another similar device of artificial variables represented by A_1, A_2 .

Ques.: Solve the LP Problem using simplex

method. Maximize $Z = 5x_1 + 3x_2$ Subject to constraints $3x_1+5x_2 \le 15$ $5x_1+2x_2 \le 10$ $x_1, x_2 \ge 0$ (Non-negativity constraint)

Solution:

Max.
$$Z = \mathbf{5}x_1 + \mathbf{3}x_2 + \mathbf{0}S_1 + \mathbf{0}S_2$$

Subject to constraints

$$3x_1 + 5x_2 + s_1 + 0s_2 = 15$$

$$5x_1 + 2x_2 + 0s_1 + s_2 = 10$$

where x_1, x_2 and $s_1, s_2 \ge 0$

		C_j	5	3	0	0	
Basic	C_B	x _b	<i>x</i> ₁	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	Min. ratio
<i>s</i> ₁	0	15	3	5	1	0	5
<i>s</i> ₂	0	10	5	2	0	1	2 → (Key row)
		Zj	0	0	0	0	
		$C_j - z_j$	5	3	0	0	

Key element = 5 Incoming variable = x_1 Outgoing variable = s_2

		C_j	5	3	0	0	
Basic	C_B	x _b	<i>x</i> ₁	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	Min. ratio
<i>s</i> ₁	0	9	0	19/5	1	-3/5	45/19 (key row)
<i>x</i> ₁	5	2	1	2/5	0	1/5	5
		Zj	5	2	0	1	
		$C_j - z_j$	0	1	0	-1	

column)

Key element = 19/5Incoming variable = x_2 Outgoing variable = s_1

		Cj	5	3	0	0	
Basic	C _B	x _b	<i>x</i> ₁	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	Min. ratio
<i>x</i> ₂	3	45/19	0	1	5/19	-3/19	
<i>x</i> ₁	5	20/19	1	0	-2/19	25/19	
		Z_j	5	3	5/19	16/19	
		$C_j - z_j$	0	0	-5/19	-16/19	

Since all the $C_j - Z_j$ are negative or zero, so we get the optimum solution

$$x_1 = 20/19$$

 $x_2 = 45/19$
max Z = 235/19.