

Submitted By : Namarta
Class : BSc (Nan Medical) Semester $3^{\text {rd }}$
Roll No. : 521]
Submitted to : Hemant Kumari Mam

Simplex method

Introduction :

*Simplex Method is a more general method suitable for solving LPP with a large number of variables.

* This method was developed by George Dantzig in 1947 and was made available

Basic Terms

1) Slack variables: The \leq type inequations can be transformed into equations by the addition of nonnegative variables, say S_{1}, S_{2} etc, known as Slack variables.
2) Surplus variables: The \geq type inequality, subtracted from the left hand side constraint to convert the constraint into equally is called Surplus variables.

3) Artificial variables: If x_{1} and x_{2} are set equal

 to zero, s_{1} and s_{2} turns out to be negative violating the nonnegative restriction. Therefore, to overcome this, we introduce another similar device of artificial variables represented by A_{1}, A_{2}.
Question

Ques. :

Solve the LP Problem using simplex method.
Maximize $Z=5 x_{1}+3 x_{2}$
Subject to constraints

$$
\begin{aligned}
& 3 x_{1}+5 x_{2} \leq 15 \\
& 5 x_{1}+2 x_{2} \leq 10 \\
& x_{1}, x_{2} \geq 0 \text { (Non-negativity constraint) }
\end{aligned}
$$

Solution:

Max. $Z=5 x_{1}+3 x_{2}+0 S_{1}+0 S_{2}$

Subject to constraints

$$
\begin{aligned}
& \quad \begin{array}{r}
3 x_{1}+5 x_{2}+s_{1}+0 s_{2}=15 \\
5 x_{1}+2 x_{2}+0 s_{1}+s_{2}=10 \\
\text { where } x_{1}, x_{2} \text { and } s_{1}, s_{2} \geq 0
\end{array} \text { l}
\end{aligned}
$$

		C_{j}	5	3	0	0	
Basic	C_{B}	x_{b}	x_{1}	x_{2}	s_{1}	s_{2}	Min. ratio
s_{1}	0	15	3	5	1	0	5
s_{2}	0	10	5	2	0	1	$\begin{aligned} & 2 \rightarrow \\ & \text { (Key row) } \end{aligned}$
		z_{j}	0	0	0	0	
		$C_{j}-z_{j}$	5	3	0	0	
			Δ (key co				

Key element $=5$ Incoming variable $=x_{1}$ Outgoing variable $=s_{2}$

		C_{j}	5	3	0	0	
Basic	C_{B}	x_{b}	x_{1}	x_{2}	s_{1}	s_{2}	Min. ratio
s_{1}	0	9	0	19/5	1	-3/5	$\begin{aligned} & 45 / 19 \\ & \text { (key row) } \end{aligned}$
x_{1}	5	2	1	2/5	0	1/5	5
		z_{j}	5	2	0	1	
		$C_{j}-z_{j}$	0	1	0	-1	
				\measuredangle (key column			

Key element = 19/5
Incoming variable $=x_{2}$
Outgoing variable $=s_{1}$

Basic	C_{B}	x_{b}	x_{1}	x_{2}	s_{1}	s_{2}	Min. ratio
x_{2}	3	$45 / 19$	0	1	$5 / 19$	$-3 / 19$	
x_{1}	5	$20 / 19$	1	0	$-2 / 19$	$25 / 19$	
		z_{j}	5	3	$5 / 19$	$16 / 19$	
		$C_{j}-z_{j}$	0	0	$-5 / 19$	$-16 / 19$	

Since all the $C_{j}-Z_{j}$ are negative or zero, so we get the optimum solution

$$
\begin{aligned}
& x_{1}=20 / 19 \\
& x_{2}=45 / 19
\end{aligned}
$$

$$
\max Z=235 / 19
$$

