Reiman stieltjes condition

In mathematics, the **Riemann-Stieltjes integral** is a generalization of the Riemann integral, named after Bernhard Riemann and Thomas Joannes Stieltjes. The definition of this integral was first published in 1894 by Stieltjes.[1] It serves as an instructive and useful precursor of the Lebesgue integral, and an invaluable tool in unifying equivalent forms of statistical theorems that apply to discrete and continuous probability.

Defination :-

if $f \in \mathbb{R}(a)$ on [a,b] iff for every $\varepsilon > 0$, there exists a partition P of [a,b]such that $U(P,f,a)-L(P,f,a) < \epsilon$

Proof:-

Let $f \in \mathbb{R}(a)$ on [a,b], then

$$\frac{b}{\int} f d\alpha = \int_{a}^{\overline{b}} f d\alpha = \int_{a}^{b} f d\alpha$$

.....(1)

Let $\leq >0$ be given number and since the upper and lower integral are the sup and inf respectively of the upper and lower sum , therefore there exists partition P_1 and P_2 such that

$$U(P_{1}, f, \alpha) < \int_{a}^{\overline{b}} f \, d\, \alpha + \frac{\epsilon}{2}$$

or $U(P_{1}, f, \alpha) < \int_{a}^{b} f \, d\, \alpha + \frac{\epsilon}{2}$ (B)
Also $U(P_{2}, f, \alpha) > \int_{\underline{a}}^{b} f \, d\, \alpha + \frac{\epsilon}{2}$

 $U(P_2, f, \alpha) > \int f d\alpha - \frac{\epsilon}{2}$

Now if $\mathsf{P}{=}\mathsf{P}_1\mathsf{U}\;\mathsf{P}_2$ is the common Refinement of P_1 and P_2 , then

$$U(P, f, \alpha) \le U(P_1, f, \alpha) < \int_{a}^{b} f d\alpha + \frac{\epsilon}{2} < L(P_2, f, \alpha)$$

Hence U(P,f,a)-L(P,f,a)< ϵ

 $(\alpha) + \frac{\epsilon}{2} \le L(P, f, \alpha) + \frac{\epsilon}{2}$

Conversely:-

Let U(P,f,a)-L(P,f,a)< ε. Now we show that f€R (a) over [a,b] By defination

$$L(\mathbf{P}, f, \alpha) \leq \int_{\underline{a}}^{b} f \, d\alpha \leq \int_{\underline{a}}^{\overline{b}} f \, d\alpha \leq U$$

$$\therefore \quad 0 \leq \int_{a}^{\overline{b}} f \, d\alpha - \int_{\underline{a}}^{b} f \, d\alpha \leq U(\mathbf{P}, f)$$

 (\mathbf{P}, f, α) $(\alpha) - L(P, f, \alpha) < \epsilon$

 $\Rightarrow \int f d\alpha - \int f d\alpha < \epsilon$

Since € is arbitrary , we have

⇒ f€ R(a) over [a,b] Hence the proof

Prove that upper Reiman sum is grater than lower Reiman sum

- Proof: Let P_1 and P_2 be the partition of [a,b]
 - Let P^* be the common refinement of P_1 and P_2 , then by the theorem " If P* is the refinement of P, then
 - (i) $L(P_1,f,\alpha) \leq L(P^*,f,\alpha)$ (ii) $U(P^*,f,\alpha) \leq U(P,f,\alpha)$
 - we have $L(P_1,f,\alpha) \leq L(P^*,f,\alpha) \leq U(P^*,f,\alpha) \leq U(P_2,f,\alpha)$
 - \Rightarrow L(P₁,f,a) \leq U(P₂,f,a)

.....(1)

Keeping P_2 fixed and lub over P_1 , we have from (1)

I.u.b L(P₁,f,a) $\leq U(P_2,f,a)$

$$\Rightarrow \int_{\underline{a}}^{b} f \, dx \leq \mathrm{U}(\mathrm{P}_{2}, f, \alpha) \qquad \dots (2)$$

Now taking g.l.b of all partition P_2 , we get from (2)

$$\int_{a}^{\overline{b}} f d\alpha \leq g.l.b.U(P_2, f, \alpha)$$

 $\Rightarrow \int_{\underline{a}}^{\underline{b}} f d\alpha \leq \int_{a}^{\overline{b}} f d\alpha$

Hence the proof