MATHEMATICS PRESENTATION VECTOR INTEGRATION

- SUBMITTED BY —PRABHDEEP KAUR
- ROLL -NO 1280
- CLASS BA SEM 1
- SUBMITTED TO HEMANT MAM

SECTION-I

INTEGRATION OF VECTORS

Art-1. Indefinite Integral

We know that integration is the reverse process of differentiation.

Let $\vec{f}(t)$ and $\vec{F}(t)$ be two vector functions such that

 $\frac{d}{dt} \left\{ \vec{\mathbf{F}}(t) \right\} = \vec{f}(t) \text{ . Then } \vec{\mathbf{F}}(t) \text{ is called the indefinite integral of } \vec{f}(t) \text{ w.r.t. } t \text{ and}$ we write it as $\int \vec{f}(t) dt = \vec{\mathbf{F}}(t) + \vec{c}$

Art-2. If vector function \vec{F} is indefinite integral of \vec{f} w.r.t. t, then prove that $\vec{F} + \vec{c}$ is also indefinite integral of \vec{f} , where \vec{c} is a constant vector.

...(1)

[:: of (1)]

 \vec{c} being a constant vector, $\frac{d\vec{c}}{dt} = 0$

Proof: Here $\int \vec{f} dt = \vec{F}$

$$\therefore \quad \frac{d\vec{F}}{dt} = \vec{f}$$

Now,
$$\frac{d}{dt}(\vec{F} + \vec{c}) = \frac{d\vec{F}}{dt}$$

or
$$\frac{d}{dt}(\vec{F} + \vec{c}) = \vec{f}$$

$$\therefore \int \vec{f} dt = \vec{F} + \vec{c}$$

Note: 1. The constant of integration c is scalar if integrand is scalar and vector if integrand is vector.

Note: 2. If $\vec{f} = f_1 \hat{i} + f_2 \hat{j} + f_3 \hat{k}$, where f_1, f_2, f_3 are scalar functions of some variable t say, then

$$\int \vec{f} dt = \hat{i} \int f_1 dt + \hat{j} \int f_2 dt + \hat{k} \int f_3 dt.$$

Example 4. Evaluate $\int_{C} \vec{F} \cdot d\vec{r}$ where $\vec{F} = xy\hat{i} + yz\hat{j} + zx\hat{k}$ and curve C is

$$\vec{t} = t\hat{i} + t^2 \hat{j} + t^3 \hat{k}, t \text{ varies from } -1 \text{ to } 1.$$

Sol. Here
$$\vec{F} = xy\hat{i} + yz\hat{j} + zx\hat{k}$$
, $\vec{r} = t\hat{i} + t^2\hat{j} + t^3\hat{k}$,

$$\therefore \frac{d\vec{r}}{dt} = \hat{i} + 2t\,\hat{j} + 3t^2\,\hat{k}$$

Also
$$\vec{r} = x \hat{i} + y \hat{j} + z \hat{k}$$
 $\Rightarrow x = t, y = t^2, z = t^3$

$$\therefore \quad \vec{F} = t^3 \hat{i} + t^5 \hat{j} + t^4 \hat{k}$$

$$\therefore \int_{\mathbf{C}} \vec{\mathbf{F}} \cdot d\vec{r} = \int_{-1}^{1} \vec{\mathbf{F}} \cdot \frac{d\vec{r}}{dt} dt = \int_{-1}^{1} (t^3 + 2t^6 + 3t^6) dt = \int_{-1}^{1} (t^3 + 5t^6) dt$$

$$= \left[\frac{t^4}{4}\right]_{-1}^{1} + \left[\frac{5t^7}{7}\right]_{-1}^{1} = \left(\frac{1}{4} - \frac{1}{4}\right) + \left(\frac{5}{7} + \frac{5}{7}\right) = 0 + \frac{10}{7} = \frac{10}{7}$$

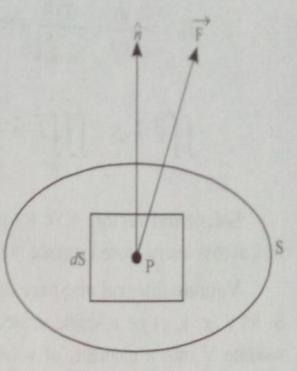
Flux across a surface

Let S be a piecewise smooth surface and $\vec{F}(x, y, z)$ be a vector function of position defined and continuous over S. Let P be any point on the surface S and \hat{n} be the unit vector at P in the direction of outward drawn normal to the surface S at P. Then $\vec{F} \cdot \hat{n}$ is the normal component of \vec{F} at P. The integral of $\vec{F} \cdot \hat{n}$ over S i.e., $\iint \vec{F} \cdot \hat{n} \, dS$ is

called the flux of F over S.

Let $d\vec{S}$ be a vector (called vector area) of magnitude dS and direction that of \hat{n} . Then $d\vec{S} = \hat{n} dS$

$$\therefore \iint_{S} \vec{F} \cdot \hat{n} \, dS = \iint_{S} \vec{F} \cdot d\vec{S}$$



Art-3. Definite Integral

If $\frac{d\vec{F}}{dt} = \vec{f}$ for all values of t in the interval [a, b] then the definite integral between a and b is denoted as $\int_{a}^{b} \vec{f} dt$ and is defined as $\int_{a}^{b} \vec{f} dt = \left[\vec{F}\right]_{a}^{b} = \vec{F}(b) - \vec{F}(a)$.

Note: We give below some results which can be proved easily:

1.
$$\int \left(\frac{d\vec{f}}{dt} \cdot \vec{g} + \vec{f} \cdot \frac{d\vec{g}}{dt} \right) dt = \vec{f} \cdot \vec{g} + c$$

2.
$$\int \left(\frac{d\vec{f}}{dt} \times \vec{g} + \vec{f} \times \frac{d\vec{g}}{dt} \right) dt = \vec{f} \times \vec{g} + c$$

3.
$$\int \left(2\vec{r} \cdot \frac{d\vec{r}}{dt}\right) dt = \vec{r}^2 + c$$

4.
$$\int \left(2\frac{d\vec{r}}{dt} \cdot \frac{d^2\vec{r}}{dt^2}\right) dt = \left(\frac{d\vec{r}}{dt}\right)^2 + c$$

5.
$$\int \left(\vec{r} \times \frac{d^2 \vec{r}}{dt^2} \right) dt = \vec{r} \times \frac{d \vec{r}}{dt} + \vec{c}$$

6.
$$\int \left(\vec{a} \times \frac{d\vec{r}}{dt} \right) dt = \vec{a} \times \vec{r} + \vec{c} \text{ where } \vec{a} \text{ is a constant vector.}$$

7.
$$\int c \vec{r} dt = c \int \vec{r} dt.$$

Art-6. Work Done and Circulation

Work done by a force: Let $\vec{F} = F_1 \hat{i} + F_2 \hat{j} F_3 \hat{k}$ be a force acting at P with position vector $x\hat{i} + y\hat{j} + z\hat{k}$.

Then the work done by the force F in displacing a unit particle from A to B is defined as line integral from A to B

Work done =
$$\int_{A}^{B} \vec{F} \cdot \hat{t} ds = \int_{A}^{B} \vec{F} \cdot d\vec{r} = \int_{A}^{B} (F_1 dx + F_2 dy + F_3 dz)$$

Conservative Field. A force F is said to be conservative if the work done by it in moving its point of application from a point A to B depends only on the points A and B and not upon the path joining A and B.

Circulation. If C is a closed curve, then the tangential line integral of F along C is called the circulation of F along C.

: circulation of
$$\vec{F}$$
 along $C = \int_{C} \vec{F} \cdot d\vec{r} = \int_{C} (F_1 dx + F_2 dy + F_3 dz)$

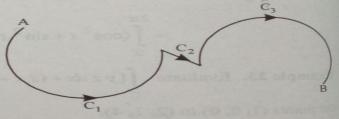
SECTION-II TANGENTIAL LINE INTEGRAL

Art-4. Some Preliminary Concepts

Oriented Curve: Let C be any curve in space. Let us orient C by taking one of two directions along C as the positive direction; the opposite direction along C is then called the negative direction. Suppose A is the initial point and B the terminal point of C under the chosen orientation. If A and B coincide, then the curve C is called a closed curve.

Smooth Curve: A curve $\vec{r} = \vec{f}(t)$ is called smooth if $\vec{f}(t)$ is continuously differentiable. In other words, a curve is said to be smooth if it possesses a unique tangent at each of its points.

A curve C is said to be **piecewise** smooth if it is composed of a finite number of smooth curves. The curve C shown in the above figure is piecewise smooth as it is composed of three smooth curves C₁, C₂ and C₃. The circle is smooth closed curve while the curve consisting of the four sides of a rectangle is a piecewise smooth closed curve.



Smooth Surface: A surface S, which has a unique normal at each of its points and the direction of this normal depends continuously on the points of S, is called a smooth surface.

If a surface S is not smooth but can be subdivided into a finite number of smooth surfaces, then it is called a **piecewise smooth surface**. The surface of a sphere is smooth while the surface of a cube is piecewise smooth.

RINTEGRATION

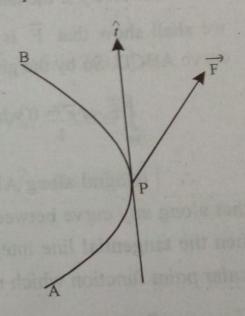
Tangential Line Integral: The tangential line integral of a vector function \vec{F} a curve C from A to B is the definite integral of the scalar resolute of \vec{F} in the integral of the tangent to the curve measured from a fixed point in the sense A to B, and the limits of integration being the values of s corresponding to the points A and B.

If \hat{i} is the unit tangent at the point P and \vec{F} is the value of the function here, then tangential line integral

$$= \int_{A}^{B} \vec{F} \cdot \hat{t} ds = \int_{A}^{B} \vec{F} \cdot \frac{d\vec{r}}{ds} ds = \int_{A}^{B} \vec{F} \cdot d\vec{r}$$

$$= \int_{A}^{B} (F_1 \hat{i} + F_2 \hat{j} + F_3 \hat{k}) \cdot (dx \hat{i} + dy \hat{j} + dz \hat{k})$$

$$= \int_{A}^{B} (F_1 dx + F_2 dy + F_3 dz)$$



integral of a vector function \overrightarrow{F} vanishes for every

$$\iint_{S} \vec{F} \cdot \hat{n} dS = \iint_{S} (F_1 \cos \alpha + F_2 \cos \beta + F_3 \cos \gamma) dS$$
$$= \iint_{S} (F_1 dy dz + F_2 dz dx + F_3 dx dy)$$

where dv dz, dz dv, dx dv are the orthogonal projection of S on the co-ordinate planes.

Exam

sol-

Note. For evaluating surface integrals, it is easy to express them as double integrals taken over the orthogonal projection of the surface S on one of the co-ordinate planes. But this is possible only if axis line perpendicular to the co-ordinate plane chosen meets the surface in not more than one point.

Suppose the surfaces S is such that any line perpendicular to the xy-plane meets S in not more than one point. Let R be the orthogonal projection of S on the xy-plane. If y is the acute angle which \hat{n} at P to the surface S makes with z-axis, then

$$\cos \gamma dS = dx dy$$

where dS is the small element of area of surface S at P.

$$\therefore dS = \frac{dx \, dy}{\cos y} = \frac{dx \, dy}{\left| \hat{n} \cdot \hat{k} \right|} \text{ where } \hat{k} \text{ is the vector along } z\text{-axis.}$$

$$\therefore \qquad \iiint_{S} \vec{F} \cdot \hat{n} \, dS = \iiint_{R} \vec{F} \cdot \hat{n} \, \frac{dx \, dy}{\left| \hat{n} \cdot \hat{k} \, \right|}$$

Solenoidal vector. A vector point function is said to be solenoidal in a region if its flux across every closed surface in the region is zero.

Volume integral or Space integral. Let V be the volume bounded by the surface S. let f(x, y, z) be a single valued function of position defined over V. Subdivide the volume V into n elements of volumes $\delta V_1, \delta V_2, ..., \delta V_n$. In each part δV_k , choose an

arbitrary point $P_k(x_k, y_k, z_k)$. Form the sum $\sum_{k=1}^n f(P_k) \delta V_k$. Take the limit of the sum in such a ways that the largest of the volumes $\delta V_k \to 0$. This limit, if it exists, is called the

volume integral of fover V and is denoted by $\iiint_V f dV$ or $\int_V f dV$.

If we divide the volume V into small cuboids by drawing lines parallel to the three co-ordinate axis, then

$$dV = dx dy dz$$
 and

$$\therefore$$
 volume integral = $\iiint_V f \, dx \, dy \, dz$.

Let $d\vec{S}$ be a vector (called vector area) of magnitude dS and direction that of \hat{n} . Then $d\vec{S} = \hat{n} dS$

Let α , β , γ be the angles which \hat{n} makes with co-ordinate axes. If l, m, n are the direction-cosine of this outward normal, then $l = \cos \alpha$, $m = \cos \beta$, $n = \cos \gamma$.

$$\hat{n} = (\cos \alpha)\hat{i} + (\cos \beta)\hat{j} + (\cos \gamma)\hat{k} = l\hat{i} + m\hat{j} + n\hat{k}$$

Let
$$\vec{F} = F_1 \hat{i} + F_2 \hat{j} + F_3 \hat{k}$$

$$\vec{F} \cdot \hat{n} = F_1 \cos \alpha + F_2 \cos \beta + F_3 \cos \gamma = F_1 l + F_2 m + F_3 n$$

SECTION-III

SURFACE AND VALUED INTEGRAL

Art-7. Surface Integral

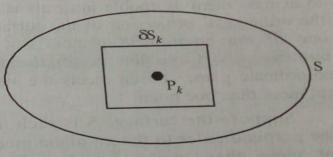
Any integral which is to be evaluated over a surface is called a surface integral.

Let f(x, y, z) be a single valued function defined over a surface S of finite area. Subdivide the area S into n elements of areas $\delta S_1, \delta S_2, \ldots, \delta S_n$. In each part δS , we choose an arbitrary point P_k (x_k, y_k, z_k) . Form the sum

 $\sum_{k=1}^{n} f(P_k) \delta S_k$. Take the limit of this sum as

 $n \to \infty$ in such a way that the largest of the areas δS_k approaches zero. This limit if it exists, is called the surface integral of f(x, y, z) over S and is denoted by

$$\iint_{S} f(x, y, z) dS \text{ or } \iint_{S} f dS.$$



Note 1. We know that

Tangential line integral =
$$\int_{A}^{B} \vec{F} \cdot d\vec{r}$$
.

In general, the value of this integral depends not only on the end points A and B of the path C but also on C. This line integral is said to be independent of path for every pair of end points A and B, the value of the integral is the same for all paths C starting from A and ending at B.

We have proved in above Art that tangential line integral of \vec{F} is independent of path iff $\vec{F} = \nabla V$.

Note 2. From the result proved in above Art, we have :

Let $\vec{F}(x, y, z)$ be a vector point function defined and continuous in a region R of space. Then \vec{F} is irrotational in R iff $\vec{F} = \nabla \phi$ where ϕ is a scalar point function.

Example 1. Find the work done when a force $\vec{F} = (x^2 - y^2 + x)\hat{i} - (2xy + y)\hat{j}$ moves a particle in xy-plane from (0, 0) to (1, 1) along the parabola $y^2 = x$.

Sol. Let C denote the arc of the parabola $y^2 = x$ from the point (0, 0) to the point (1, 1). The parametric equations of the parabola $y^2 = x$ can be taken as $x = t^2$, y = t. At the point (0, 0), t = 0 and at the point (1, 1), t = 1.

Now
$$\vec{F} = (x^2 - y^2 + x)\hat{i} - (2xy + y)\hat{j}$$
, $d\vec{r} = (dx)\hat{i} + (dy)\hat{j}$

$$\text{work done} = \int_{C} \vec{F} \cdot d\vec{r} = \int_{C} [(x^{2} - y^{2} + x) dx - (2xy + y) dy] \\
= \int_{0} \left[(x^{2} - y^{2} + x) \frac{dx}{dt} - (2xy + y) \frac{dy}{dt} \right] dt \\
= \int_{0}^{1} \left[(t^{4} - t^{2} + t^{2}) (2t) - (2t^{3} + t) (1) \right] dt \\
= \int_{0}^{1} (2t^{5} - 2t^{3} - t) dt = \left[\frac{2t^{6}}{6} - \frac{2t^{4}}{4} - \frac{t^{2}}{2} \right]_{0}^{1} \\
= \left[\left(\frac{1}{3} - \frac{1}{2} - \frac{1}{2} \right) - (0 - 0 - 0) \right] = -\frac{2}{3}.$$

Example 14. Evaluate $\iiint_{V} \phi \ dV$, where $\phi = 45 x^2 y$ and V is the closed region bounded

by the planes 4x + 2y + z = 8, x = 0, y = 0, z = 0.

Sol.
$$\iiint_{V} \phi \ dV = \int_{x=0}^{2} \int_{y=0}^{4-2x} \int_{z=0}^{8-4x-2y} 45 \ x^{2}y \ dx \, dy \, dz$$

$$= 45 \int_{x=0}^{2} \int_{y=0}^{4-2x} [z]_{0}^{8-4x-2y} x^{2}y \, dy \, dx$$

$$= 45 \int_{x=0}^{2} \int_{y=0}^{4-2x} x^{2} y (8-4x-2y) dy dx$$

$$=45 \int_{x=0}^{2} \left[x^{2} (8-4x) \frac{y^{2}}{2} - 2x^{2} \frac{y^{3}}{3} \right]_{0}^{4-2x} dx$$

$$=15\int_{0}^{2}x^{2}(4-2x)^{3}dx=128$$

(After simplification)

Example 3. Evaluate
$$\int_{0}^{1} \left\{ t \, \hat{i} + (t^2 - 2t) \, \hat{j} + (3t^2 + 3t^3) \, \hat{k} \, \right\} dt$$

Sol.
$$\int_{0}^{1} \left\{ t \hat{i} + (t^{2} - 2t) \hat{j} + (3t^{2} + 3t^{3}) \hat{k} \right\} dt$$

$$= \hat{i} \int_{0}^{1} t dt + \hat{j} \int_{0}^{1} (t^{2} - 2t) dt + \hat{k} \int_{0}^{1} (3t^{2} + 3t^{3}) dt$$

$$= \hat{i} \left[\frac{t^{2}}{2} \right]_{0}^{1} + \hat{j} \left[\frac{t^{3}}{3} - t^{2} \right]_{0}^{1} + \hat{k} \left[t^{3} + \frac{3t^{4}}{4} \right]_{0}^{1}$$

$$= \hat{i} \left[\frac{1}{2} - 0 \right] + \hat{j} \left[\left(\frac{1}{3} - 1 \right) - (0 - 0) \right] + \hat{k} \left[\left(1 + \frac{3}{4} \right) - (0 + 0) \right]$$

$$= \frac{1}{2} \hat{i} - \frac{2}{3} \hat{j} + \frac{7}{4} \hat{k}$$

