
•Bubble sort is a simple sorting algorithm. It works
by comparing each pair of adjacent items and
swapping thing them if they are in the wrong
order.

•The passes of the list are repeated until no swaps
are needed that indicates the list is sorted.

•Bubble sort has time complexity O(n2) which
makes it inefficient for sorting large data.

•This algorithm is same as that of selection sort,
but with a small difference that in case heavy
particles (i.e. the largest elements will eventually
come up and hence the name is bubble sort.

Here A is a linear array with N filled elements and this
algorithm sort the element in ascending order using Bubble
Sort Technique .

Step 1: Repeat step 2 and 3 FOR I =1 to N-1

Step 2: Repeat step 3 for J=1 to N-I

Step 2: if A[J+1] THEN

Set Temp: A[J]

Set A[J+1]:A[J+1]

A[J+1]:TEMP

[End if]

Step 4: Exit

Advantages:

•Bubble sort is simple to implement and
understand.

•It will be very quick on an already sorted list.

Disadvantages:

•Time complexity of bubble sort is O(n2) same as
that of selection sort.

•It is probably the slowest sort ever found.

Bubble Sort Time Complexity Space
complexity

Average Case O(n2) 0

Worst Case O(n2) 0

•In this algorithm, the element is inserted at a position where it
gives sorted list.

•That is, we start with the element, compare it with the first and
then the third is compared with the first two and so on.

This sorting algorithm is frequently used when n is small. The
insertion sort algorithm is small. The insertion sort scans A from A
[1]to A [n], inserting element A[k-1]into its proper position in the
previously sorted sub-array A[1], A[2],…, A[k-1].

Pass 1. A[1] by itself is trivially sorted.

Pass 2 . A[2] is inserted either before or after A[1], A[2] is sorted.

Pass 3. A[3] is inserted either before or after A[1], A[2], that is, before
A[1], between A[1] and A[2] , or after A[2] , so that: A[1] ,A[2] , A[3] is
sorted.

Pass 4. A[4] is inserted into its proper place in A[1] , A[2] , .. ,A [n-1] so
that :A[1] ,A[2], A[3], A[4] is sorted.

Pass N. A[N] is inserted into its proper place in A[1], .. , A[N-1]so that:
A[1], A[2] , … , A[n] is sorted.

This algorithm sorts the array A with N elements

Step 1: repeat steps 2 to 4 for K=2 to N

Step 2: set temp :a[k] and PTR :=K-1

Step 3. Repeat while TEMP <A [PTR] and PTR>=1

(A) set A [PTR+1] :=A [PTR]

(B) set PTR:=PTR-1

[End of loop , step 3].

Step 4 set a [ptr+1]:=temp

[End of loop, step1]

Step 5. Exit

Advantages:

•On the almost sorted arrays insertion sort shows better
performance,upto o(n).

•It is also very easy to implement with a linear search.

Disadvantage:

•On an array,insertion is show becouse all the elements
after it have to be moved up.

•This sort is applied to small data sets but not larges data
sets.

•queue can be represented in the memory by two ways.

1.Queue using array

2. Queue using link list

(1) Queues using array:(static queue):

• The queue entered or data element can be stored in array.

•The queues represented using linear arrays are called as called as linear queues.

• operation mention on queue can be implemented on an array.

• The data we need for our array implementation of the queue are: an array and a count.

• The main property of a queue is that objects are inserted in the rear and come off from the front of the queue.

▪ (2). Queue using link list:(Dynamic queue):

 An alternative and efficient representation of queue is possible by using Linked lists for storing the data using dynamic memory.

 • Advantage of storing queue in a linked list

 The advantage of linked list representation of queue over array representation are:

 (1). There is no need of knowing the queue size before implementing it, as dynamic memory allocation technique helps helps the
progammer to declare the memory space at run time.

 (2). The queue is never full as long as the system has enough space for dynamic allocation. So there is no need to check the isfull or
overflow condition of the concept of pointer in linked lists

 Remember that a queue implemented using linked list is called as linked queue.

 • A linked list is a nodes (a nodes can be a struct or a class) defined arbitrarily in memory.

• A node has a special variable (pointer) of the same type as the structure/class that points to the next memory location thus making
the list values continuous.

The Frist node of a list is referred to as head/ start most of the time and the last node is referred to as tail/ end , the tail/ end of the
list always points to NULL or 0, which is also referred to as grounding.

▪ Typedef stuct node

{

 int data;

 Stuct node*next;

} node;

Typedef stuct Q

{

 node *R;

 node *F;

}

▪ 1. Enqueue.

▪ 2. Dequeue.

 (1). Enqueue:

• it’s very similar to the addition in a dynamic linked list.

• The only difference is that here you’II add the new element only at the end of the
list, since a dynamic list is used for the Queue ,the queue is also dynamic,mean it
has no prior size set.

• Aim is to entred the element in the queue.

• We don’t have to check the Overflow condition in linked Queue.

(2). Dequeue:

 This is again very similar to deletion in linked list, but you can only delete from
the head of the list, that makes it a Queue.

▪ Algorithm:
(1). Enqueue opretion:

QUEHE_INSERT(Q, FRONT, REAR, N, ITEM)

STEP 1: If (REAR =N) the

 write “ Overflow” and Exit

 [End If]

STEP 2: If (FRONT=NULL and REAR =NULL) then

 Set FRONT: = 1, REAR :=1

 Eels

 Set REAR = REAR +1

 [End If]

STEP 3: Q [REAR]=ITEM

STEP4: EXIT

▪ Algorithm:

(2). DEQUEUE:

QEUEUE_ DELETE (Q, FRONT, REAR, N, ITEM)

STEP 1: If (FRONT = NULL) Then

 Write “UNDERFLOW” and Exit

 [End If]

STEP 2: Set ITEM := Q[FRONT]

STEP 3: If (FRONT= REAR) Then

 Set FRONT:= NULL

 Set REAR := NULL

 Else

 Set FRONT:= FRONT +1

 [END If]

 STEP 4: EXIT

Stack
Definition of Stack

Stack is a list in which all the insertion and

deletion are made at one end, called the top of

the stack.

Example of Stack

• Real-life examples of a stack are a
deck of cards, piles of books, piles
of money, and many more. This
example allows you to perform
operations from one end only, like
when you insert and remove new
books from the top of the stack.

Representation of Stack in Memory

Usually stack can be represented by two ways:

Using Array

Using Link List

Representation of Stack using Array

In the representation of stack as an array the size
of stack is fixed i.e. the maximum number of
element it can accommodate must be known in
advance.

The top of the stack is the first element of array.

The stack item are placed from item [0] to item
[top-1].

define MAX 50
Struct stack
{
 Int top ;
 Int item [MAX];
};

A stack is
represented in
the memory as

 E

 D

 C

 B

 A

Top

A stack is represented with the help of array in the
memory as

 index 0 1 2 3 4

E D C B A

Stack grows from L to R.

Representation of Stack Using Link List

• The major problem in the implementation of stack using
array is that it suffers the basic limitation of an array that its
size cannot be increased or decreased once it is declared.

• Stack can be represented efficiently using linked list.
• This problem can be solved by implementing stack using

link list. For this type of implementation, let us use singly
link list for storing stack elements.

• The top of stack is given by a pointer, the top pointing to
first item of the list i.e. in the beginning of the list.

• The stack element ordered from top to bottom in link list
from left to right.

In C the stack node can be defined as

Struct stack
{
 int data;
 Struct stack * link;
} node;

2

7

5

top

• Here top of the stack is a node having value 2, linked with the
next node having value 7 and last node is having value 5 with
its address field NULL.

Push operation
• To add new element in the stack, we must perform the two step which

are as follows.

a) Increment top indicator
b) Put new element at new top.

Algorithm

PUSH (STACK, TOP, MAXSTK, ITEM)

Step 1: IF TOP = MAXSTK Then

 Print : Overflow and go to step 4

Step 2: Else Set Top = Top + 1 // increment top by one

Step 3: Set STACK [TOP] := ITEM // insertion of an element in top of

stack

Step 4: Stop

Operations of Stack

There are two basic operations on the
stack:

i. Push (a, b) to insert the element "b" on the top of
stack "a"

ii.Pop (a) to remove the top element of the
stack "a" and return the removed element as
a function value.

Explanation of Push Operation

Push mean Add an item on top

Step 1 Check whether the top of STACK is having the maximum
number of element it can accommodate. If it contains maximum
number then print overflow.
Step 2 Otherwise (Means if condition is false) then add an element in
the top of the stack.
Step 3 Now the top element of the stack is the item that you have
inserted recently.

To implement the push operation, there may be a situation when the size of stack is
equal to the size of declared array size. Then, we cannot push any element on to the
stack. Such type of operation is referred to as an Overflow.
 Therefore to push the element, we must ensure that stack is not full.

Pop Operation
Algorithm : To delete or pop an item from the top

Pop (STACK, TOP, ITEM)

This algorithm delete or pop the top element from the

stack and assign it to variable name item.

Step 1: If Top = 0 then

 Print "underflow" and go to step 4

 //(underflow means there is no item in the stack)

Step 2: Else Set ITEM = STACK [Top]

Step 3: Set top := top – 1

Step 4: Exit

Explanation of Pop Operation

Step 1 To check whether there is an element present in the stack or not.
If no element is there in the stack then there is condition of
underflow.
Step 2 Otherwise Assign the value of Top element to item.
Step 3 Perform the operation, Top = top – 1
Step 4 Stop

To remove an element from the top of stack, we must first check the possibility
of underflow as it is quite possible that somebody tries to pop an element from
an empty stack.

Thank You

Shivalik college naya nangal

from BCA department

Insertion and deleting from array

Operation In Array...

• Inserting means adding new element in the array.

• Insertion of an element at the end of linear array is at

the end.

• Consider the following :

Inserting Element In The Array...

Algorithm....

• An array named , A is linear array with an element

in it.

• LB is lower bound and UB is upper bound.

• Data is a positive integer which is to be inserted at

Kth position in array A.

1. Start

2. Assign the value of n to variable i.

3. Repeat step IV and V till I>=k

4. Move the ith element down ward by making

assignment.

5 A[i+1] = A[i]

6 i = i-1

7 A[k] = data

8 N= n+1

9 Stop

Deleting Element from Array....

• To remove the element from array.

• An array named , A is linear array having N

element in it.

• Consider the following :

1. Start

2. Data = A[k]

3. Repeat step V. Stating from initial value of variable i
from K to final value say n-1.

4. Move (i+1) element upward by making assignment A
[i] = [i+1]

Algorithm....

5 N = n – 1

6 Stop

Sparse Matrix.....

• A matrix that has relatively higher number of zeros
than the non zero elements is known as sparse
matrix.

• A Matrix can be define as a two dimensional array
having ‘M’ columns and ‘N’ representing m *n
matrix.

• In fig 3.10 only 2 memory unit utilized and other

seven are Wastage of memory space.

• Similarly in fig 3.10(b) only 3 units are utilized and

other 17 are zeros, hance there is wastage of

memory space as well as time.

• Sparse matrix are those matrix that have the

majority of their elemens equal to zero.

* To save the space of memory and time ,
sparse Matrix requires some sparse

representation *

Thank you….

DATA STRUCTURE(TREES)

TREES
A tree data structure is a hierarchical structure that is used to
represent and organize data in a way that is easy to navigate and
search. It is a collection of nodes that are connected by edges and has
a hierarchical relationship between the nodes. The topmost node of
the tree is called the root, and the nodes below it are called the child
nodes. Each node can have multiple child nodes, and these child
nodes can also have their own child nodes, forming a recursive
structure1.
The tree data structure has roots, branches, and leaves connected
with one another. The root node is the topmost node of a tree or the
node which does not have any parent node. A non-empty tree must
contain exactly one root node and exactly one path from the root to all
other nodes of the tree. The nodes which do not have any child nodes
are called leaf nodes1.
There are different types of trees such as general tree, binary tree,
binary search tree, AVL tree, B-tree, etc.2

https://www.geeksforgeeks.org/introduction-to-tree-data-structure-and-algorithm-tutorials/
https://www.geeksforgeeks.org/introduction-to-tree-data-structure-and-algorithm-tutorials/
https://www.geeksforgeeks.org/introduction-to-tree-data-structure-and-algorithm-tutorials/
https://www.geeksforgeeks.org/introduction-to-tree-data-structure-and-algorithm-tutorials/
https://www.javatpoint.com/tree

REPRESENTATION OF TREES
IN MEMORY

▪ A binary tree can be represented in memory using pointers.
Each node in the tree contains a data element and two
pointers to its left and right child nodes. The root node is
represented by a pointer to the topmost node of the tree. If
the tree is empty, then the value of the root is NULL.

BINARY TREES
▪ A binary tree is a tree data structure where each node has at

most 2 children. Since each element in a binary tree can
have only 2 children, we typically name them the left and
right child. A binary tree is represented by a pointer to the
topmost node (commonly known as the “root”) of the tree. If

the tree is empty, then the value of the root is NULL. Each
node of a Binary Tree contains the following parts: Data.
Pointer to left child. Pointer to right child.

BINARY TREE TRAVERSAL
▪ There are three types of binary tree traversal:
▪ In order Traversal
▪ Preorder Traversal
▪ Post order Traversal
▪ In order traversal is used to traverse the left sub tree first, then

visit the root node, and finally traverse the right sub tree.
Preorder traversal is used to visit the root node first, then
traverse the left sub tree, and finally traverse the right sub tree.
Post order traversal is used to traverse the left sub tree first,
then traverse the right sub tree, and finally visit the root node.

▪ I hope this helps! Let me know if you have any other questions.

BINARY SEARCH TREES
▪ A binary search tree (BST) is a binary tree data structure in which the

value of each node in the left sub tree is less than or equal to the values
in the node itself, and the value of each node in the right subtree is
greater than or equal to the values in the node itself.

▪ A binary search tree is a binary tree with the following properties:
▪ The left sub tree of a node contains only nodes with keys lesser than

the node’s key.

▪ The right sub tree of a node contains only nodes with keys greater than
the node’s key.

▪ The left and right sub tree each must also be a binary search tree.
▪ There must be no duplicate nodes.

	Slide 1: Representation of queue in the memory
	Slide 2: Representation of queue in the memory
	Slide 3: Representation of queue in the memory
	Slide 4: Queue operations
	Slide 5: Queue operations
	Slide 6: Queue operations
	Slide 1: Stack
	Slide 2: Example of Stack
	Slide 3: Representation of Stack in Memory
	Slide 4: Representation of Stack using Array
	Slide 5
	Slide 6: A stack is represented in the memory as​
	Slide 7: A stack is represented with the help of array in the memory as
	Slide 8: Representation of Stack Using Link List
	Slide 9: In C the stack node can be defined as
	Slide 10
	Slide 11: Push operation
	Slide 12: Operations of Stack
	Slide 13: Explanation of Push Operation
	Slide 14: Pop Operation
	Slide 15: Explanation of Pop Operation
	Slide 1: Shivalik college naya nangal from BCA department
	Slide 2: Operation In Array...
	Slide 3: Inserting Element In The Array...
	Slide 4: Algorithm....
	Slide 5
	Slide 6
	Slide 7: Deleting Element from Array....
	Slide 8: Algorithm....
	Slide 9
	Slide 10: Sparse Matrix.....
	Slide 11
	Slide 12
	Slide 13
	Default Section
	Slide 1: DATA STRUCTURE(TREES)
	Slide 2: TREES
	Slide 3: REPRESENTATION OF TREES IN MEMORY
	Slide 4: BINARY TREES
	Slide 5: BINARY TREE TRAVERSAL
	Slide 6: BINARY SEARCH TREES

