Teaching Plan (Session 2023-24)

Class- B.Sc. II (Sem III) Teacher Name- Sunita Saini Subject-Physics

Period No. 5

Name of Paper - Statistical physics and thermodynamics - I, Optics

Sr.	Date/	Topics to be covered
No.	Weekly	
	1-5 Aug	SECTION-A
		Basic ideas of statistical physics, Scope of statistical physics,
		Basic ideas about probability.
	7-12 Aug	Distribution of four distinguishable particles in two
		compartment of equal size. Concept of macro states,
		microstates, thermodynamic probability, Effects of constraints
		on the system.
		Group Discussion about covered topics
	14-19 Aug	Distribution of n particles in two compartments.
		Class Test
		Topic Distribution of four distinguishable particles in two
		compartment of equal size.
	21-26 Aug	Equilibrium state of dynamic system.
		PPT on Topic
		Deviation from the state of maximum probability.
	28 Aug-02	Distribution of distinguishable n particles in k compartments of
	Sep	unequal sizes.
	4-9 Sep	SECTION – B
		Phase space and its division into elementary cells. Three kinds
		of statistics.
		Class Test
		Topic Distribution of distinguishable n particles in k
		compartments of unequal sizes.
	11-16 Sep	The basic approach in the three statistics, Maxwell Bolttzman
		(MB) statistics applied to an ideal gas in equilibrium.
	18-23 Sep	Experimental verification of Maxwell Boltzman law of
		distribution of molecular speeds. Need for quantum statistics-
		Bose-Einstein (B.E.) statistics.
		PPT on Topic Derivation of Planck's law of radiation.
	25-30 Sep	Deduction of Wien's displacement law and Stefan's law from
		Planck's law, Fermi-Dirac (F.D.) statistics.

	Assignment on Topic Comparison of M.B., B.E. and F.D Statistics.
2-7 Oct	Paper - B OPTICS
	SECTION – A
	Interference: Concept of coherence, Spatial and temporal
	coherence. Coherence time, Coherence length, Area of coherence.
	Assignment on Topic
	Conditions for observing interference fringes (BOYS). Interference
	by wave front division and amplitude division. Michelson's
	interferometer-working, Principle and nature of fringes.(GIRLS)
9-14 Oct	Interference in thin films, Role of interference in anti-reflection.
16-21 Oct	High reflection dielectric coatings. Multiple beam interference.
23-28 Oct	MST
30 Oct - 4	Fabry-Perot interferometer, Nature of fringes, Newton Rings.
Nov	
6-11 Nov	Class Test
	Topic Michelson's interferometer-working, Principle and nature of
	fringes.
13-18 Nov	Discussion about topics of Assignment
20-25 Nov	REVISION