Teaching Plan (Session 2024-25) Class- B.Sc. II (SEM – III) Teacher Name- Sunita Saini Subject-Physics (THERMODYNAMICS) CODE PHYB2301T

Sr. No.	Date	Topics to be covered	
1.	1-3 Aug	Section–A Statistical definition of entropy, Change of entropy of a system, Additive nature of entropy. Group Discussion about covered topics	
2.	5-10 Aug	Law of increase of entropy, Reversible and irreversible process and their examples. Workdone in a reversible process.	
3.	12-17 Aug	Carnot's cycle, Entropy changes in Carnot cycle. Applications of thermodynamics to thermoelectric effect.	
4	19 – 24 Aug	Change of entropy along a reversible path in a P-V diagram. PPT On Topic - Change of entropy along a reversible path in a P-V diagram. Entropy of a perfect gas	
5.	26 – 31 Aug	Equation of state of an ideal gas from simple statistical consideration, Heat death of the universe.	
6.	2 -7 Sep	SECTIONB Derivation of Maxwell's thermo dynamical relations.Cooling produced by adiabatic stretching, Adiabatic compression,	
7	9- 14 Sep	Change of internal energy with volume, specific heat at constant pressure and constant volume.	
8.	16-21 Sep	Class Test Topic- Cooling produced by adiabatic stretching, specific heat at constant pressure and constant volume.	
9.	23-28 Sep	Expression for Cp -Cv, Change of state and Clayperon equation,	
10.	30 Sep- 5 Oct	Thermodynamical treatment of Joule-Thomson effect.	

11.	7 - 12 Oct	Liquefiction of helium, production of very low temperature by adiabatic demagnetization.
12.	14-19 Oct	Assignment on Topic- Use of Joule-Thomson effect, liquefiction of helium, (BOYS) Production of very low temperature by adiabatic demagnetization. (GIRLS)
13.	21- 26 Oct	MST
14.	28 Oct-2 Nov	REVISION AND TEST
15.	4- 9 Nov	REVISION AND TEST
16.	11- 16 Nov	REVISION AND TEST

Teaching Plan (Session 2024-25) Class- B.Sc. II (SEM – IV) Teacher Name- Sunita Saini Subject-Physics (STATISTICAL PHYSICS) CODE PHYB2402T

Sr.	Date/	Topics to be covered
No.	Weekly	
1.	7-11 Jan	SECTION-A
		Basic ideas of statistical physics, Scope of statistical physics,
		Basic ideas about probability.
2.	13-18 Jan	Distribution of four distinguishable particles in two compartment
		of equal size.
2	20-25 Ian	Concept of macro states microstates thermodynamic
5.	20-25 Jan	probability Effects of constraints on the system
		Crown Discussion about covered topics
1	27 Jan -	Distribution of a particles in two compartments
т.	1Feb	Class Test
		Tonic Distribution of four distinguishable particles in two
		compartment of equal size.
5.	3-8 Feb	Equilibrium state of dynamic system.
0.		PPT on Topic
		Deviation from the state of maximum probability.
6.	10-15 Feb	Distribution of distinguishable n particles in k compartments of
		unequal sizes.
7.	17-22 Feb	SECTION – B
		Phase space and its division into elementary cells. Three kinds of
		statistics.
		Class Test
		Topic Distribution of distinguishable n particles in k
		compartments of unequal sizes.
8.	24 Feb -1	The basic approach in the three statistics.
0	Mar 3 8 Mar	Manuall Deltamon (MD) statistics applied to an ideal ass in
9.	3-8 Mar	equilibrium.
10.	10-15 Mar	Experimental verification of Maxwell Boltzman law of
		distribution of molecular speeds.
		-
11.	17-22 Mar	Need for quantum statistics-Bose-Einstein (B.E.) statistics.

12.	24-29 Mar	Fermi- Dirac Statistics (F.D).
13.	1 -5 April	PPT on Topic: Derivation of Planck's law of radiation
14.	7-12 April	Deduction of Wien's displacement law and Stefan's law from Planck's law
15.	16-30 April	Assignment on Topic Comparison of M.B., B.E. and F.D statistics
16.	1 May	REVISION