EXM ~TrobucTioN

The free electron theory of metals successfully e"P_laan'd e v:;f:js}z;osgﬂes Of me
heat capacity, thermal conductivity, electrical corl'dUCthlt)’f @‘;5;‘0 e e)l:arn IW e}:c. But
remained some properties which were not explained by this Iy Ple, the follgy,
properties : ; .

(i) It could not explain the difference between condugtors, msulatcl)rs ;}nc} semicond

(i) Itis found that divalent metals (Be, Cd etc.) and tnvalen_t rT\eta} s (Al, In etc.)

conductors even though the theory says that conductivity is proportiona
concentration. Rather monovalent metals Cu, Ag and A"_' are good conductor
have less concentration of electrons than divalent and t-m'/alent metals..

(iii) The shape of Fermi surface is found to be non-spherical in shape which according to

theory should be spherical. :

(iv) Some of the metals exhibit positive hall coefficient (¢.g., for Be, Zn etc.), while the free electry

theory predicts negative hall coefficient for all the metals.

Similarly, there are many other properties which could not be explained on the basis of fry
electron theory.
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potential of the ion cores with periodicity of the lattice. One such periodic potential in one dimensioy
case is shown in Fig. 3.1.
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Fig. 3.1 : One dimensional periodic potential experienced b

Y an electron. The positive ion cores are shown by #
separated by lattice constant a
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allowed energy bands separated by forbidden energy bands,
s F( k )are periodicin k .

g to free electron theory, the energy of the electron as a function of k is

I E = %k%/2m where k = 2r/\
W“e wavelength associated with electron.

al Schrodinger wave eq. for a free electron which is moving in a constant potential

‘ 2
%+(2n:/n2)(s—vo)w &

(31
l o'l “ﬁm

V = exp(+ikx) «(3.2)

emrgyofelectmns is given as
By = E-V,
hk! p2
S 2m 2m

“ ave function of eq. (3.2) to represent a wave propagating in the x-direction, we

sider the one dimensional Schrodinger wave equation for and electron in a
period ‘a’ (i.e., periodicity of lattice) '

V() = Vix+a) 83 |

equation is now written as, . |
s |

/P)(E-V@IY = 0 N

en by eq. (3.3). The solution of eq. (3.4) is given by Bloch theorem, also known
: Mthnt solutions of eq. (6.4) are of the type

V@) = exp(ikx)u, () (35)
w(x) = w(x+a) - «.(3.52)
' (3.2) but modulated by a funcuon u, (x) which is again
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A\

& g (x+a) = exp (ika) w(x)
= ()
Where T ika)

("

[

tion (3.4) is a gecond order differential o
uati :

x Iu'ltlfm
We know that Schrodinger wave eq \ is equation say f (x) and g (y i,
hence there cxist:)nly two rcfl independent solutions for this eq y )r any

y Y of
ndependent solutions.
solution wil] be simply a linear combination of the IT1 Iltf’hc B ) trase should be _,
Hence, if f (x + a) and ¢ (x +a) are to be solutions 0 (
' flrda) = agflx) + 4800
¢(x+a) = Pfix)+ B,8(x)
where o's and f’s are functions of E.
i resented as
Let y (x) be another solution of eq. (3.4), hence it must be re‘p
v = Af(x)+BgX)

S

Siblg

{33

L yx+a) = Af(x+a)+Bgx+a)
- = (A, +Bp ) f(x) + (Ao, + BB, g(x)
Now because of eqs. 3.6 and 3.8, we can write
or wix+a) = y[Af(x)+Bg(x)]
| = Yy () (38
where .
Aa,+Bf, = YA
Ao,+Bp, = YB
! (,-YA+p,B=0 :
GA+(pB,-yB=0 (38

Now equation (3.9) have non-vanishing solutions for A and B if and only if the determinans
coefficients is zero, i.e.,
a -y B yI i

o o By
or Y= (05 +B,) v+ (0 B~y B,) = 0 el
or Y-(+B)y+1 =0 .61

We have written o, B, - o, B, = 1 in eq. (3.10) and this result is proved below.
As f(x) and g(x) are solutions of Shrodinger eq. (3.4), we have

: )
%{&(Zm/ﬁz)[E—V(I)]f'; 0

2

; .o
o o HemIME-V@] g = o
_ Multiplying f eq. by g and vice versa and then subtracting, we get
d’g  dif
e el
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A ,
_&;(ﬁ’f -.f{f) = ()

[ ’
- . B~ = constant
. the wronskian -(312)
I o
w(x) = ');:(x) 2(x)
f'(x)  o’(yy = COnstant
ﬁom equaﬁon (37), we may Writ(’,‘ g {x) (312“)
w(x+a) = ISXHI) 8(x+a)| |f(x)g(x) o, o,
(X+a) g'(x+a)7| f)g'(x)IB, B, (313)

Hence combining €gs. (3.12) and (3.13), we get
(“']Bz -~ U-zﬂl) w(x) = w(x + a)
a"l BZ o 0’2 Bl = ]
ore, eq. (3.11) gives two roots of Y, S0 as

ans (%) and W,(x). It must also be noted th
mco;ﬁidﬁ two cases for the €nergy range

| Case (i) For energy ranges (o, + [32)1 <4
[n this case the two roots will be comple

to satisfy eq. (3.6 a) and hence there are two wave

Y, 7= 1and (a, + B,) is a real function of energy
s.

X conjugate of each other, we can write
. ] Ty = exp(ika) and vy, = exp (- ika)
where k is real and the corresponding wave functions w,ix) and y,(x) can be written as

Vi (x+a) = exp (ika) V¥, (x) and y, (x + a) = exp (~ika) y,(x)

~(3.14)
i¢, in general Vx+a) = exp[+ika] y(x)
Such functions are the Bloch functions as described by eqs. (3.5) and (3.6) '
Case (i) For energy ranges (o, + B,) > 4 '
In this case the roots are real and will be reci
functions of the type. | v, (x) exp (1 x) u (x)
Y, (x) = exp (-px)u(x),
wherejuis real. These are not acceptable wave functions since these are not bounded and approaches
+ « when x approaches infinity.

Thus, we find that energy spectrum of an electron in a periodic potential consists of allowed
and forbidden energy regions as bands. This will be discussed in further detail in the following

procals of each other these correspond to wave

section,

(k] THE KRONIG-PENNEY MODEL
e

\ronig and Penney studied the behaviour V)
of electrons in a periodic potential by

©nsidering relatively simple and one

¢ ensional model. It is assumed that the
:ﬁﬂmﬂgy of an electron has the shape of
the. ~w°1h:::?;;\mf‘13 3.2. The period o _ e Oa i

: IE »

Fig. 3.2 : One dimensional Kronig Penney periodic pofentia
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= regions may be written as,

Now Schrodinger wave equation for the two
dz\P_'_g_"_'Bw = OforO0<x<a

R .‘
and ii—y--b-z—-n-!-@f-v)" = 0for-b<x<0
dx* than V, ."[llg,
It is assumed that E energy of electron is smaller 2
o omE 2m(Vo —%) _ o
Let T S a! and al B ' :
. : B
Where ot and B are two real quantities.
So egs. (3.15) and (3.16) becomes
2
v de D<x<a
S tiaty = Ofor -y
and .ﬁy_w = Ofor-b<x<0

{1y

Since the potential is periodic, so the solution of egs. (3.18) and (3.19) must be of th, forp
Bloch functions i.e.,

() = exp (ikn) u, (¥)

(33
where i, (x) is the periodic function x with period (a + 6. |
dy 2 d
& =ikop iy on®)
d s du d*u, 4
Lk, R . auy, du
and 2 k-exp(rk:r)u‘*tl:kexp_(it_x? ax ik exp (ikx) 73+ exp (ik) dxk
dy d’ k
or T 5 ~k* exp (ikx) u, + 217c(exp) (ikx) ‘:: + exp(lh-) - {3
Putting equation (3.20) and (3.21) in equauom (3.18) and (3.19), we ge_-t
d*u d 8-t
dx; 2:1—“—‘--(0‘ k)i "= 0for0<x<a .02
dzua du
—F k=2 (Bz+k2)u; = -b<x<0 : .8

where u, represents the value of u,
interval - b < x < 0.

The solutions of these equations are

in the interval 0 <_x-e<.'a and.u_z represents the value of u, in

u = Agi(c'k.)l,i.ae-ﬂu#‘k)x forO<x<a ey,

= c‘@!—mx'*[}ﬁ-w"ﬁ)’fm ~b<x<0 L3

where A, B, C and D are arbxtnrymm%m i | bound®!
conditions. RS e A e



o (1, »
= |1
| f‘ ["111-.-0 a)y=0 .(3.26q)

s[5
dx Jy=0 L dx Jx=g - (3.26b)
[ul]_m = lllzl,,:_[a «(3.26¢)
I lay  LHX Jeay (3.26d)
.. these boundary conditions to equations (3.24) and (3.25), we get
A+B=C+D .(3.27a)
Ai(@a—K)—-Bi(a+k) = C(B—ik)=D(B+ik) (3.27b)
|
| pri(@ 08 +Beila+ha = ¢ ~(B-ib 4 p(B+ik)b (3.27¢)
Ai(a-k)fi(a—k)“ —Bi(a+k) c—i(a+k)a =C(B—ik)e (B-k)b L p (B+ !.k)e(ﬂ+(k]b .(327d)
hese equations can be solved for non-zero value of A, B, C and D only if the determinant of the
wo{&ﬂ,c and D becomes zero.
1 1 1 1
ila-k) —i(a+k) p—ik —(f+ik)
zx--t)- e-i(a-'rk)ﬂ g~ (f-ik)b ikl -0
L\v-tr“'*" i@+ ke (B-ike P (B ikje
Onsolving, we get
§ea’ sinh Bb si
—5; Bbsin aa + cosh B bcos 0a = cos (a+h) - --(3.28)

Inorder to make the situation more simple, Kronig and Penney considered the case in which V,
nds to infinity and b approaches zero but the product b V,, remain finite and is known as barries
smenghh s that the potential barrier becomes delta function. Under these circumstances, eq. (3.27)
becomes

mVyb
: Wa
% (328) can be written more simply as

sinoa+cosoa = coska

RN | mawfk*

P +cosal = coska
aa

¥iere P is defined as

P = mVybys .(330)
m‘mdﬂwmv& of the potential barrier. Largevalueofl’meansﬂutgivm
s 'Wbmwaparﬁcularpo@ﬁalwﬂ |

Vilugg fight hand side of eq. (3.29) can assume values between + 1 and
un'mﬂﬂﬁwved wmchmakalefthandsideof&ﬁuquaﬁon]iebetwem

_1 and hence only those
+1.Fig. 33. shows
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Fig. 3.3 : LHS of eq. (3.29) for P = -3-23 plotted as function of aa Heavily drawn lines on abscissa shoy 1, © aloggg |

rigions.
left hand side of this equation as a function of « a for values P = 3 /2. Since o? is PTOPOrtion,
energy E, hence abscissa gives a measure of energy. We can conclude from Fig. 3.3 the follow‘mg
points. >

(i) The energy spectrum of the electrons consists of energy bands allowed (heaVil}' drayy
and forbidden (lightly drawn). |

(i) The width of allowed energy region or band increases with increasing values of oy o ene

(111) With increasing P i.e. with increase in binding energy of electron, the width of Particyly
energy allowed energy band decreases. In case P — = , the allowed region becomes infinitely
narrow and the energy spectrum becomes a line spectrum z.e. insulator, !
Sinceas P - =

sinaa =0

le. if aa = ¢ nnwithn=0,1,2,3,....
= 2
and from eq. (3.17), we obtain E = a:h
m
nh?

2
= 2" fDrP-—-)m

2ma
~ This s the result we obtain for a particle in a box of atomic dimensions with constant potentid
r.e. € is tightly bound. This result is expected since

for large values of P, tunneling through the barriers

becomes improbable. =

Let us now consider the case when P —» 0,in
this case we obtain

cosaa = coska /"
i-e iy ="k . 771
WAk A
Hence B T JKen
2m

This represents energy of a completely free S — -
electron for which any energy value is possible. —
This resultis also expected since by definition when ?
P = 0, the electrons are free. - 3 —

¥ % Plax an/P
These conclusions are represented in Fig. 3 4. NG .

Fig. 3.4 : Allowed and forbidden energy ranges
funetion of P.



) o = ey
s« ,ﬂ"w z
5 .
/('r:;; hand side cos ka of eq. (329) is an even periodic function and its v —5
whether k is positive or negative or it is increased by integer multiple .:;f value does not
R E of the electron is an even periodic function of k with period zrt..;-n‘ As a result.

ool & of energy 1s shown in Fig. 35(5). This may be considered as obtained by th nm Peciodic
F#l'l . ;e repetition of

z Rl . B :
o _.;<k< 7 thusis the frst brillouin zone. This representation is known as repe
MM&!M‘:R“SE in this case is that we obtain a large, number values co
: wh, energy Values E. However, these are two other schemes ViZ. extended
wahunl 200 schemee. These are shown in Fig, 3.5 (b) and 3.5 (c).

We find that discontinuties occur at

responding to
one scheme and

k= tmx/awheren=1,23, ..
These k values define the boundaries of the first, second and third Brillouin zones.
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Fig. 3.5 : Constructed of three Brillouin zones for a square lattice.

!'moum ZONES
We know that in Kronig-Penney model that in one dimensional lattice, the iscontiny
: occur when wave k satisfy the relation B) Al
: ke % n{- wheren=1,2,3,
Emmﬁd&aﬁm(mmdmmmmmkhﬁm)wkvﬂm,divided

. A S f + X assh : .
unm;ydmmﬁnmhesmmm“°m ,‘“‘Wﬁlﬁs%&mmmm

AT B T T S

b4 n
called Brillouin zones. First zone extends from =710 + 2 and second zone consists of two parts

f 2r ing from- Bgq_ 2% o g

E mmﬂing&om;w';‘“dmmdmg 2 aht a -M_,&:ew-ﬁ}{h: '
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;‘"“"’ s S
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Fig. 3.6

Construction of zones

Normally only first or reduced zone is sufficient
but sometimes higher zones are also constructed.
To construct different zones, take O as the origin
and join it to nearest lattice points P, Q, R and S.
Take the perpendicular bisectors of lattice vectors
OP, OQ, OR and OS. These bisectors enclose a
Square EFGH which is the first Brillouin zone
(Fig 3.7.). For second Brillouin zone again join the
origin to the next nearest lattice points. Take the
mid-points E, F, G and H and draw perpendicular
to these points. These perpendi-culars enclose a
Square PQRS. The area between squares PQRSand  \_

- - ‘—_ﬁ--‘J
EFGH represents, the second Brillouin zone. Fig. 3.7 : Construction of three Brillouin zones for ;
Similarly other zones ar constructed.

square lattice.

EEM NUMBER OF POSSIBLE WAVE FUNCTIONS IN A BAND

We were considering the crystals to be of infinite dimensions and concluded that there m;
certain energy ranges within which there is a continuous distribution of energy. Let us now conside
a finite crystal of length L, the following periodic boundary condition must be satisfied.

V(x+L) = v(xv) (331)
Because these are Bloch functions,we have

exp [ik(x +L) Ju(x+L) = exp (ikx) u,(x)
Now u, is periodic, hence we have

| k= 2nn/Lwithn=+1, +2, . (33
Hence, the number of possible wave functions in the range dk are given as
L dk
dn = T (33

Now k has value varying from - n/a to x/a in first Brillouin zone,

where a is length of unit
Hence, total number of possible states in a band,

I; -x/a

|y A — o dk
2 ,‘!,-
n= L/aiena=L 33

If N unit cells are there in the length L of the

(3.34) givesusn =N mtal‘wegetNa=L-ComParisonofﬂﬁ$Wﬁ
eq. (3.34] =N.




'r:'l'ed by 2N electrons.
=" y OF ELECTRON

_ ve representing the electron, i.e.,

dw

v=—&F

h

E

. 2m
i
m

GEes
dk

hk

Il

v
m

v, however E is, in general not
can be seen in Fig. 3.8 (), from

of the band, velocity is zero , we
increases with k and is maximum
- of inflection. Beyond this point
h in creasing energy.

n in external electric field
n for a small time dt,

-

5 @ -éegedxrawv dt

1 [d_E
dk ) -(3.36)

h2k2

—

number of unjt
N say that each

E of Possible wave function in any energy b 687
e account Pauli’s exclusion principle and e

and is equal to the
lectron spin, we cq

de-Broglie theory, velocity of an electron with wave vector k i aa
me as group

(3.35)

P

m

—
m

(@)

(b)

—— ] - —————— e — -

| ke 5
Fig.3.8: (a) E verses k curve (b) v verses k curve
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Therefore, from eq. (3.36), we get

h dk -

: iven Brillouin zone, 5, t

Here it is assumed that there is only one electron mh;]:/eeg 9 .
: , we

Principle does not come into picture, from eq. (3.37)

dk CE
1 dE
Now V= 7 dk
: : i ect to time,
Hence, to get acceleration, differentiating this equation with respect to time
dv 1 d’E dk
adis —(E = h dk2 dt «(3
From egs. (3.38) and (3.39), we get
ee ( d°E
a = h—f Ek_i_ (3
Comparing this resu]t with classical result
a = eF/m

It follows that the electron behaves as if it has an effective mass m given as

N
m = p2 [gk—f-} ()

+ M 1s represented as a function OfK

(a)

-n/a |

ala

I
We define a quantity f, which gives a measure of
degree of freedom of an electron and is expressed as

=
5 |
m hz | I
£, Vs k is shown in Fig 3.9 (b). It is obvious that when \
m* is large, f is small i.e. the part;

m m | d*E l
- man

- ey .(3.42) l ®)

I
concept which arises due to the interaction of the \_ -nFI 0 :
electron wave packet with the periodic lattice,

In most conductors s« =
insulators having almost filled
process. The concept of effec
high electronic specific heat

valence bonds, the effecti
tive mass is able to acco

5 unt for man erim ations :
of transition meta]s and thejr B e

ir high Paramagnetic susceptibility.



Let us consider an energy band which is filled with
glectrons upto k, as shown in Fig. (3.10) (k, is less than (
1/a). As far as the affect of external field is concerned.

one is interested in knowing the equivalence to ‘free’
electrons of the N electrons in the band. The number of

j
free electrons in a band is given as .
Ny = X - (3.43) ﬁ-
where the summation extends over all the occupied g :

states in the band for a one-dimensional crystal of length
L, the number of states in the interval dk is given as,

]
A
-
L S
dn = T dk - (3.44) /
Because two electrons can occupy each of the states T=0

in the shaded region of Fig. 7, the above relation must
be multiplied by 2. Hence,

2L m {4
N = = D,
L sF!f‘
N = o
Al ~(345)
lfﬁ\ebandisoompletelyﬁued, >
nR ;..
k= 2—:n=123
a
dE
&k = ¢
and hence Ne=0

which means that number of free electrons in a completely filled band is zero.

The effective number of electrons reaches a maximum for aband filled upto k = k, the inflection
point.

In case of insulators there are no effective free electrons. All the bands are completely full in the
vdmbandaMwﬂmﬁmbdecomﬁle&lyemptyandﬁ\eiebahrgefmﬁddmaugygap
(of the order of 5 - 10 ¢V) between these two bands and it1s impossible to excite any electron across
this region Fig. 3.11 (a).

Aﬂﬂnbarﬁsm&mdﬂmmplebdyﬁﬂedormptyatmyhmpaﬂmmhm
memmmmymmt&.ﬂmmvhydmmmm
MﬂmnhmuﬂmaﬂedmumAmpmm&wmphdeBdhmﬁ
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Fig. 3.1 : Energy band model for insulator, semiconductor and metal.

where the covalent bond splits 2s and 2p levels into two bands separated by an energy 0]

AE; =7 eV; with the valence electrons filling the lower band. :

When the forbidden gap is small, say of the order of 1 eV or less Fig 3.11 (b), so that electy,
could be excited thermally from states near the top of the filled band to states near the botto, of
next empty band across the band gap. Hence a limited number c_'f electrons flre_ available
conduction in the conduction band which is almost empty, on applying an electric field. The sty
near top of filled band also contributes to the flow of electric current through the mechanisp, f ol
conduction. A meterial of this type is called semiconductor. At low temperature (0K) the Valend
band is completely filled and the conduction band is completely empty. So, a semiconductor v
behaves as an insulator at low temperature. Even at room temperature some electrons (aboy; ,
electron for 10 atoms) cross the conduction and impart little conductivity to the semicond,,
As the temperature is increased, more and more electrons cross over to the conduction band
the conductivity increases. Examples of semiconductors are Germanium (band gap 0.78 eV) ang
silicon (band gap 1.21 eV).

The energy band structure in solids have two possibilities. (i) A solid is a conductor if either it
conduction band is not completely filled and the valence band may be completely filled and therejs
extremely small energy gap between them as shown inFig. 3.11 (c) e.. Li, Na, K etc. (ii) The valen
band is completely filled and the empty conduction band overlap with valence band Fig. 3.11 (g
(eg; Ba, Cd, Zn etc.) so the energy gap is zero. The electron in the valence band are free to mow
inside the crystal lattice. The electrons under the influence of small applied field acquire addition!
energy and move to higher energy state. These mobile electrons constitute current.

= ————————SOLVED EXAMPLES

Example 3.1. Prove that for the Kronig-Penney potential with P < < 1, the energy of the lowest energy
band at k = 0 is ,

E = kz P l mZ
Solution. We know
sin aa
P = +cosaa = cos ka
fork = 0, we have
sinaa
P +cosaa - 1




