
What is pointer
in C-
programming
language

In the C programming language, a pointer is a variable that
stores the memory address of another variable. Pointers are
essential for tasks like dynamic memory allocation, working
with arrays, and passing parameters to functions by
reference. Here's a brief overview of pointers in C

1.Declaration: Pointers are declared
using an asterisk (*) before the
variable name. For example:copy code

• int *ptr; // Declares a pointer

2.Assignment: Pointers can be assigned the
address of a variable using the address-of
operator (&):copy codeint x = 10; int *ptr =
&x; // ptr now points

3.Accessing the Value: You can access
the value stored at the memory
location pointed to by a pointer using
the dereference operator (*):copy
codeint y = *ptr; // y now contain

4.Pointer Arithmetic: Pointers can be
incremented and decremented to move to
the next or previous memory locations:copy
codeptr++; // Moves ptr to the next

5.Null Pointers: Pointers can be assigned the
special value NULL to indicate that they do
not point to a valid memory location.

6.Pointer and Arrays: Arrays in C are closely
related to pointers. The name of an array can
be used as a pointer to its first element.

7.Pointers and Functions: Pointers can be
used to pass variables by reference to
functions, allowing the function to modify the
original variable.

8.Dynamic Memory Allocation:
Pointers are commonly used
with functions like malloc and
free to allocate and deallocate
memory dynamically

	Slide 1: What is pointer in C-programming language
	Slide 2: In the C programming language, a pointer is a variable that stores the memory address of another variable. Pointers are essential for tasks like dynamic memory allocation, working with arrays, and passing parameters to functions by reference. Her
	Slide 3: 1.Declaration: Pointers are declared using an asterisk (*) before the variable name. For example:copy code
	Slide 4: 2.Assignment: Pointers can be assigned the address of a variable using the address-of operator (&):copy codeint x = 10; int *ptr = &x; // ptr now points
	Slide 5: 3.Accessing the Value: You can access the value stored at the memory location pointed to by a pointer using the dereference operator (*):copy codeint y = *ptr; // y now contain
	Slide 6: 4.Pointer Arithmetic: Pointers can be incremented and decremented to move to the next or previous memory locations:copy codeptr++; // Moves ptr to the next
	Slide 7: 5.Null Pointers: Pointers can be assigned the special value NULL to indicate that they do not point to a valid memory location.
	Slide 8: 6.Pointer and Arrays: Arrays in C are closely related to pointers. The name of an array can be used as a pointer to its first element.
	Slide 9: 7.Pointers and Functions: Pointers can be used to pass variables by reference to functions, allowing the function to modify the original variable.
	Slide 10: 8.Dynamic Memory Allocation: Pointers are commonly used with functions like malloc and free to allocate and deallocate memory dynamically

