REGISTER

Logic Microoperations

Shift Microoperations

» Arithmetic Logic Shift Unit

Register Transfer Language

REGISTER TRANSFER LANGUAGE

ifying a digital system in words, a specific
egister transfer language

nputer, the register transfer language
equence of) microoperations

‘transfer language

olic language

ient tool for describing the internal organization of digital computers
o0 be used to facilitate the design process of digital systems.

Register Transfer

Register Transfer

SASICSYMBOLS FOR REGISTER TRANSFERS

Examples
MAR, R2

R2(0-7), R2(L)

Denotes transfer of information R2 « R1

Denotes termination of control function| P:
Separates two micro-operations A«<B, B«A

Bus and Memory Transfers
BUS AND BUS TRANSFER

group of wires) over which information is
of several sources to any of several destinations.

BUS <« R

HARA HNRERNR ARRAa NN

0 4x1 0 4x1 0 4x1 0 4x1
MUX MUX MUX MUX

Bus and Memory Transfers

Do D1 D2 D3
2x4 -~

Decoder

Bus and Memory Transfers

ANSFER IN RTL

1 whether the bus is to be mentioned explicitly
transfer can be indicated as either

former case the bus is licit, but in the latter, it is

itly indicated

Bus and Memory Transfers

VIORY TRANSFER
e memory is viewed at the register level as a
Itiple locations, we must specify which

will be using
emory references

mputer systems by putting
ister, the Memory Address

is usually access
d address in a speci
R, or AR)

ory is accessed, the contents of the MAR get sent
ry unit’s address lines

—— Read

[AR 1 o Memory

l

Data out Data in

Arithmetic Microoperations

nicrooperations

nicrooperations

Arithmetic Microoperations

IC MICROOPERATIONS

icrooperations are

mmary of Typical Arithmetic Micro-Operations

+ R2 Contents of R1 plus R2 transferred to R3
Contents of R1 minus R2 transferred to R3
Complement the contents of R2

R2 « R2+1 2's complement the contents of R2 (negate)
" R3 « R1+ R2’+1 | subtraction

Rl1«< R1+1 Increment

Rl1«< R1-1 Decrement

Arithmetic Microoperations

SINARY S ADDERY/ SUBTRACTOR / INCREMENTER

ARITHMETIC CIRCUIT
&

AO

BO

Al

B1

A2

B2

A3

B3

Arithmetic Microoperations

Microoperation

Add

Add with carry
Subtract with borrow
Subtract

Transfer A

Increment A
Decrement A
Transfer A

"OGIC MICROOPERATIONS

Logic Microoperations

operations on the strings of bits in registers

ions are bit-wise operations, i.e., they work on the
ata

tions on binary data

lecisions based on the bit value

0,

two binary

ifferent logic functions that can be
ariables

1 »

1 However, most systems only implement four of these
- = AND (A), OR (v), XOR (@), Complement/NOT
m The others can be created from combination of these

Logic Microoperations

LOGIC MICROOPERATIONS

Microoperations
operations with 2 binary vars.

Boolean
: Name
Function
FO = Clear
F1 =xy AND
F2 =xy' F«AAB’
F3 =x Fe A Transfer A
F4 =X'y F«AAB
FS5 =y F«B Transfer B
F6 =x @y F<A®B Exclusive-OR
F7 =x+y F<AvVvB OR
F8 =(x+y) | F« (AvB) NOR
FO9 =(x®Yy) | F« (A®B) |Exclusive-NOR
F10 =y’ F« B’ Complement B
1011 Fll=x +Vy' F«<AvVB
1100 F12 =x' FeA Complement A
1101 F13=x'+y F«AvVB
1110 F14 = (xy)' F<« (AAB) NAND
1111 F15=1 Fealll's Settoall 1's

Logic Microoperations

WPLICATIONS C LOGIC MICROOPERATIONS

ations can be used to manipulate individual
of a word in a register

Shift Microoperations

GICAL SHIFT

e serial input to the shift is a 0.

l

] shift operation:

A
A
A
A
A
L

>

P
Bl

er Transfer Language, the following notation is used
r a logical shift left

» shr r a logical shift right
= Examples:
o R2 « shr R2

o R3 « shl R3

Shift Microoperations

SIRCULAR SHIFT

e serial input is the bit that is shifted out of
e register.

operation:

A 4
\ 4

|
1lar shift operat

-

A
A
A
A

P P P
Bl « Bl

e following notation 1s used
for a circular shift left
for a circular shift right

xample
o R2 « cir R2
o R3 <« clR3

Shift Microoperations

ARITHMETIC SHIFT

ft operation must be checked for the
overflow i

sign

v

A
A

Shift Microoperations

IC LOGIC SHIFT UNIT

Arithmetic
Circuit

Logic
Circuit

.

'§3 s2 s1 so Cin Operation Function
0 F=A Transfer A
0 1 F=A+1 Increment A
0 F=A+B Addition
. 1 F=A+B+1 Addwith carry
0 0] F=A+DB Subtract with borrow
0] o T 1 F=A+B’+1 Subtraction
0] 0 1 1 0] F=A-1 Decrement A
0] 0 1 1 1 F=A TransferA
0 1 0 0] X F=AAB AND
-0 1 O 1 X F=AvB OR
0] i 1 0] X F=A®B XOR
0 O e | X F=A Complement A
1 0O X X X F=shrA Shift right Aiinto F
1 ¢ X X F=shlA Shift left Ainto F

ONTROL UNIT

major component of the computer it controls
between the CPU , memory and peripherals.

es of Control Unit
trol :

is implemented with gates, F/Fs,
igital circuits

decoders, and
Fast operation, - Wiring change(if the design has
to be modified)

icroprogrammed Control :

* The control information is stored in a control
memory, and the control memory is programmed to
initiate the required sequence of microoperations

Any required change can be done by updating the
microprogram in control memory,

Main Memory : for storing user program
Sulichine instruction/data)

» Control Memory : for storing microprogram
(Micromstruction)

NPOY:OUTPUT ORGANIZATION
I TPUT ORGANIZATION

1 for transferring

g - Periﬁherals - Electromechanical Devices
= CPU or Memory - Electronic Device

S.AND INTERFACE
MODULES

al has an interface module

ides signals for the peripheral controller
hronizes the data flow and supervises

the transfer rate between peripheral and CPU
- or Memory

Input-Output Organization Input/Output Interfaces
/O BUS AND INTERFACE MODULES

/O bus
P Py PN -3 Data

Processor 9 9 < . Address

TR =

Interface Interface Interface Interface

Keyboard

gmd ' Printer Magnetic| |Magnetic
display disk tape
terminal

Each peripheral has an interface module associated with it

Interface

- Decodes the device address (device code)
- Decodes the commands (operation)
- Provides signals for the peripheral controller
- Synchronizes the data flow and supervises
the transfer rate between peripheral and CPU or Memory

Typical /O instruction
Op. code Device address Function code

(Command)

Computer Organization Computer Architectures Lab

v bUS AND MEMORY BUS

yuses

or information transfers

/

n CPU anc

S is for information transfers between
I/O devices through their /O interface

Input-Output Organization 8 Input/Output Interfaces

/O INTERFACE

| PortA | JilOdata
: register :
Bidirectional: Bus > < $
atabus : buffers i !
: 4 o PortB | :lOdata
: w | “|_register :
CPU chipselect i [cs 3 : e/
- S : Devi
Register select ;| I Rgq . £ .| Control Control evice
. : Timing 2 "| register |
Begister select: ,Ipgp and £ = :
I/O read Control :
; T b - Status _: Status
I/O write : | wr " register |
CS RS1 RSO Register selected

None - data bus in high-impedence
Port A register

Port B register

Control register

Status register

P S G N |
- - 00X
-0 -0 X

Programmable Interface

- Information in each port can be assigned a meaning
de%endmg on the mode of operation of the I/O device
— Port A = Data; Port B = Command; Port C = Status

- CPU initializes(loads) each port by transferring a byte to the Control Register
— Allows CPU can define the mode of operation of each port _ L
— Programmable Port: By changing the bits in the control register, it is
possible to change the interface characteristics

Computer Organization Computer Architectures Lab

) tput Qeganization 3 Lectute 35
Strobe Control

* Employs a single control line to time each transter
* The strobe may be activated by either the source or the destination unit

Soyrce-Initiated Strobe Restination-initipted Strobe

Dok Dlagram

[l P i

- =

CSE 211, Computor Organization and Archidecture Herneet Kaur, CSENT

"HANDSHAKING
ethods

id

at initiates the transfer has no
ether the destination unit
1 data

y n W1 Nc
actually receive

stination-Initiated

The destination unit that initiates the transfer no
way of knowing whether the source has actually
placed the data on the bus

To solve this problem, the HANDSHAKE method

introduces a second control signal to provide a
Reply to the unit that initiates the transfer

Asynchronous Data Transf

SOURCE-INITIATED TRANSFER USING HANDSHAKE

Data b
: Source D vali Destination
Block Diagram s D—ﬂ?—u-——>a e oo

g Valid data

L \\\~I

Sequence of Events Source unit Destination unit
_»| Place dataon bus.

Enable data valid. \
Accei)t data from bus.

/ Enable data accepted
Disable data valid.
Invalidate data on bus. \

Disable data accepted.

Ready to accept data
(initial state).

Timing Diagram o

-

Data accepted

Data valid

* Allows arbitrary delays from one state to the next
* Permits each unit to respond at its own data transfer rate
* The rate of transfer is determined by the slower unit

Destination initiated transfer

Timing Diagram Ready for data
Quta valid
Ous

