
• Register Transfer Language

• Register Transfer

• Bus and Memory Transfers

• Arithmetic Microoperations

• Logic Microoperations

• Shift Microoperations

• Arithmetic Logic Shift Unit

 Rather than specifying a digital system in words, a specific

notation is used, , register transfer language

 For any function of the computer, the register transfer language
can be used to describe the (sequence of) microoperations

 Register transfer language
 A symbolic language

 A convenient tool for describing the internal organization of digital computers

 Can also be used to facilitate the design process of digital systems.

Register Transfer Language

 A register transfer such as

R3  R5

Implies that the digital system has

 the data lines from the source register (R5) to the destination register
(R3)

 Parallel load in the destination register (R3)

 Control lines to perform the action

Register Transfer

Capital letters Denotes a register MAR, R2

& numerals

Parentheses () Denotes a part of a register R2(0-7), R2(L)

Arrow  Denotes transfer of information R2  R1

Colon : Denotes termination of control function P:

Comma , Separates two micro-operations A  B, B  A

Symbols Description Examples

Register Transfer

Bus is a path(of a group of wires) over which information is

transferred, from any of several sources to any of several destinations.

From a register to bus: BUS  R

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Register A Register B Register C Register D

B C D1 1 1

4 x1
MUX

B C D2 2 2

4 x1
MUX

B C D3 3 3

4 x1
MUX

B C D4 4 4

4 x1
MUX

4-line bus

x

y
select

0 0 0 0

Register A Register B Register C Register D

Bus lines

Bus and Memory Transfers

Three-State Bus Buffers

Bus line with three-state buffers

Reg. R0 Reg. R1 Reg. R2 Reg. R3

Bus lines

2 x 4

Decoder

Load

D0 D1 D2 D3z

w
Select E (enable)

Output Y=A if C=1
High-impedence if C=0

Normal input A

Control input C

Select

Enable

0
1
2
3

S0

S1

A0

B0

C0

D0

Bus line for bit 0

Bus and Memory Transfers

 Depending on whether the bus is to be mentioned explicitly
or not, register transfer can be indicated as either

or

 In the former case the bus is implicit, but in the latter, it is
explicitly indicated

Bus and Memory Transfers

R2 R1

BUS R1, R2  BUS

 Collectively, the memory is viewed at the register level as a
device, M.

 Since it contains multiple locations, we must specify which
address in memory we will be using

 This is done by indexing memory references

 Memory is usually accessed in computer systems by putting
the desired address in a special register, the Memory Address
Register (MAR, or AR)

 When memory is accessed, the contents of the MAR get sent
to the memory unit’s address lines

Bus and Memory Transfers

AR
Memory

unit

Read

Write

Data inData out

M

- Arithmetic microoperations

- Logic microoperations

- Shift microoperations

Arithmetic Microoperations

 The basic arithmetic microoperations are
 Addition
 Subtraction
 Increment
 Decrement

 The additional arithmetic microoperations are
 Add with carry
 Subtract with borrow
 Transfer/Load
 etc. …

Summary of Typical Arithmetic Micro-Operations

Arithmetic Microoperations

R3  R1 + R2 Contents of R1 plus R2 transferred to R3

R3  R1 - R2 Contents of R1 minus R2 transferred to R3

R2  R2’ Complement the contents of R2

R2  R2’+ 1 2's complement the contents of R2 (negate)

R3  R1 + R2’+ 1 subtraction

R1  R1 + 1 Increment

R1  R1 - 1 Decrement

FA

B0 A0

S0

C0FA

B1 A1

S1

C1FA

B2 A2

S2

C2FA

B3 A3

S3

C3

C4

Binary Adder-Subtractor

FA

B0 A0

S0

C0C1FA

B1 A1

S1

C2FA

B2 A2

S2

C3FA

B3 A3

S3C4

M

Binary Incrementer

HA

x y

C S

A0 1

S0

HA

x y

C S

A1

S1

HA

x y

C S

A2

S2

HA

x y

C S

A3

S3C4

Binary Adder

Arithmetic Microoperations

S1
S0
0
1
2
3

4x1
MUX

X0

Y0

C0

C1

D0FA

S1
S0
0
1
2
3

4x1
MUX

X1

Y1

C1

C2

D1FA

S1
S0
0
1
2
3

4x1
MUX

X2

Y2

C2

C3

D2FA

S1
S0
0
1
2
3

4x1
MUX

X3

Y3

C3

C4

D3FA

Cout

A0

B0

A1

B1

A2

B2

A3

B3

0 1

S0
S1
Cin

S1 S0 Cin Y Output Microoperation

0 0 0 B D = A + B Add

0 0 1 B D = A + B + 1 Add with carry

0 1 0 B’ D = A + B’ Subtract with borrow

0 1 1 B’ D = A + B’+ 1 Subtract

1 0 0 0 D = A Transfer A

1 0 1 0 D = A + 1 Increment A

1 1 0 1 D = A - 1 Decrement A

1 1 1 1 D = A Transfer A

Arithmetic Microoperations

 Specify binary operations on the strings of bits in registers
 Logic microoperations are bit-wise operations, i.e., they work on the

individual bits of data

 useful for bit manipulations on binary data

 useful for making logical decisions based on the bit value

 There are, in principle, 16 different logic functions that can be
defined over two binary input variables

 However, most systems only implement four of these
 AND (), OR (), XOR (), Complement/NOT

 The others can be created from combination of these

Logic Microoperations

0 0 0 0 0 … 1 1 1
0 1 0 0 0 … 1 1 1
1 0 0 0 1 … 0 1 1
1 1 0 1 0 … 1 0 1

A B F0 F1 F2 … F13 F14 F15

• List of Logic Microoperations

- 16 different logic operations with 2 binary vars.

- n binary vars → functions2 2 n

• Truth tables for 16 functions of 2 variables and the

corresponding 16 logic micro-operations
Boolean

Function

Micro-

Operations
Name

x 0 0 1 1

y 0 1 0 1

Logic Microoperations

0 0 0 0 F0 = 0 F  0 Clear
0 0 0 1 F1 = xy F  A  B AND
0 0 1 0 F2 = xy' F  A  B’
0 0 1 1 F3 = x F  A Transfer A
0 1 0 0 F4 = x'y F  A’ B
0 1 0 1 F5 = y F  B Transfer B
0 1 1 0 F6 = x  y F  A  B Exclusive-OR
0 1 1 1 F7 = x + y F  A  B OR
1 0 0 0 F8 = (x + y)' F  A  B)’ NOR
1 0 0 1 F9 = (x  y)' F  (A  B)’ Exclusive-NOR
1 0 1 0 F10 = y' F  B’ Complement B
1 0 1 1 F11 = x + y' F  A  B
1 1 0 0 F12 = x' F  A’ Complement A
1 1 0 1 F13 = x' + y F  A’ B
1 1 1 0 F14 = (xy)' F  (A  B)’ NAND
1 1 1 1 F15 = 1 F  all 1's Set to all 1's

 Logic microoperations can be used to manipulate individual
bits or a portions of a word in a register

 Consider the data in a register A. In another register, B, is bit
data that will be used to modify the contents of A

 Selective-set A  A + B

 Selective-complement A  A  B

 Selective-clear A  A • B’

 Mask (Delete) A  A • B

 Clear A  A  B

 Insert A  (A • B) + C

 Compare A  A  B

 . . .

Logic Microoperations

 In a logical shift the serial input to the shift is a 0.

 A right logical shift operation:

 A left logical shift operation:

 In a Register Transfer Language, the following notation is used
 shl for a logical shift left

 shr for a logical shift right

 Examples:

 R2  shr R2

 R3  shl R3

Shift Microoperations

0

0

 In a circular shift the serial input is the bit that is shifted out of
the other end of the register.

 A right circular shift operation:

 A left circular shift operation:

 In a RTL, the following notation is used
 cil for a circular shift left
 cir for a circular shift right
 Examples:

 R2  cir R2
 R3  cil R3

Shift Microoperations

 A logical shift fills the newly created bit
position with zero:

• An arithmetic shift fills the newly created bit
position with a copy of the number’s sign bit:

CF

0

CF

 An left arithmetic shift operation must be checked for the
overflow

Shift Microoperations

0

V
Before the shift, if the leftmost two
bits differ, the shift will result in an
overflow

• In a RTL, the following notation is used
– ashl for an arithmetic shift left

– ashr for an arithmetic shift right

– Examples:

» R2  ashr R2

» R3  ashl R3

sign
bit

S3 S2 S1 S0 Cin Operation Function
0 0 0 0 0 F = A Transfer A
0 0 0 0 1 F = A + 1 Increment A
0 0 0 1 0 F = A + B Addition
0 0 0 1 1 F = A + B + 1 Add with carry
0 0 1 0 0 F = A + B’ Subtract with borrow
0 0 1 0 1 F = A + B’+ 1 Subtraction
0 0 1 1 0 F = A - 1 Decrement A
0 0 1 1 1 F = A TransferA
0 1 0 0 X F = A  B AND
0 1 0 1 X F = A B OR
0 1 1 0 X F = A  B XOR
0 1 1 1 X F = A’ Complement A
1 0 X X X F = shr A Shift right A into F
1 1 X X X F = shl A Shift left A into F

Shift Microoperations

Arithmetic
Circuit

Logic
Circuit

C

C 4 x 1
MUX

Select

0
1
2
3

F

S3
S2
S1
S0

B
A

i

A

D

A

E

shr
shl

i+1 i

i
i

i+1
i-1

i

i

A control unit is a major component of the computer it controls
the flow of data between the CPU , memory and peripherals.

 Two major types of Control Unit

 Hardwired Control :

 The control logic is implemented with gates, F/Fs,
decoders, and other digital circuits

 + Fast operation, - Wiring change(if the design has
to be modified)

 Microprogrammed Control :

 The control information is stored in a control
memory, and the control memory is programmed to
initiate the required sequence of microoperations

 + Any required change can be done by updating the
microprogram in control memory,

Henry Hexmoor

 Control Word

 The control variables at any given
time can be represented by a string of
1’s and 0’s

Control Memory

 A memory is part of a control unit : Microprogram

 Computer Memory (employs a microprogrammed
control unit)

 Main Memory : for storing user program
(Machine instruction/data)

 Control Memory : for storing microprogram
(Microinstruction)

Henry Hexmoor

Next-address
generator

(sequencer)

Control address
register

Control
memory (ROM)

Control
data

register

Control
word

Next-address information

External
input

Henry Hexmoor

 INPU T-OUTPUT ORGANIZATION

 Provides a method for transferring
information between internal storage (such as
memory and CPU registers) and external I/O
devices

 Resolves the differences between the computer
and peripheral devices

 Peripherals - Electromechanical Devices

 CPU or Memory - Electronic Device

Henry Hexmoor

 Each peripheral has an interface module
associated with it

Interface

 - Decodes the device address (device code)

 - Decodes the commands (operation)

 - Provides signals for the peripheral controller

 - Synchronizes the data flow and supervises

 the transfer rate between peripheral and CPU
or Memory

Henry Hexmoor

Henry Hexmoor

 Functions of Buses

• MEMORY BUS is for information transfers
between CPU and the MM

 * I/O BUS is for information transfers between
CPU and I/O devices through their I/O interface

Henry Hexmoor

Henry Hexmoor

Henry Hexmoor

 Strobe Methods

Source-Initiated

The source unit that initiates the transfer has no
way of knowing whether the destination unit
has actually received data

 Destination-Initiated

The destination unit that initiates the transfer no
way of knowing whether the source has actually
placed the data on the bus

To solve this problem, the HANDSHAKE method
introduces a second control signal to provide a
Reply to the unit that initiates the transfer

Henry Hexmoor

Henry Hexmoor

