
While Loops
15-110 – Friday 09/13

Learning Goals

Use programming to specify algorithms to computers

• Use while loops to repeat actions until a certain condition is met

• Use nesting of statements to create complex control flow

Repeating Actions

Say you want to write a program that prints out the numbers from 1 to 10. Right now, that would
look like:

print(1)

print(2)

print(3)

print(4)

print(5)

print(6)

print(7)

print(8)

print(9)

print(10)

Loops

A loop is a control structure that lets us repeat actions, so that we
don't need to write out similar code over and over again.

Loops are generally most powerful if we can find a pattern between
the repeated items. This lets us separate out the parts of the action
that are the same each time from the parts that are different.

In printing the numbers from 1 to 10, the part that is the same is the
action of printing. The part that is different is the number that is
printed.

While Loops

A while loop is a type of loop that keeps repeating until a certain
condition is met. It uses the syntax:

while <boolean_expression>:

<loop_body>

The while loop checks the Boolean expression, and if it is True, it runs
the loop body. Then it checks the Boolean expression again, and if it is
still True, it runs the loop body again... etc. When the loop finds that
the Boolean expression is False, it exits the loop immediately.

Conditions Must Eventually Become False

Unlike with if statements, we want the condition in a while loop to change after a
certain number of iterations, from True to False. If this doesn't happen, the while
loop might loop forever!

The only way to make the condition change is to use a variable as part of it. We can
then change the variable inside the while loop. An example of this is shown below.

i = 0

while i < 5:

print(i)

i = i + 1

print("done")

Infinite Loops Run Forever

What happens if we don't ensure that the condition eventually becomes False? The
while loop will just keep looping forever! This is called an infinite loop.

i = 1

while i > 0:

print(i)

i = i + 1

If you get stuck in an infinite loop, press the button that looks like a lightning bolt
above the interpreter to make the program stop. Then investigate your program to
figure out why the variable never makes the condition False. Printing out the loop
variable can help with this.

While Loop Flow Chart

To make a flow chart that runs a
while loop, we need to add a
transition from the while loop's
body back to itself.

i = 0

while i < 5:

print(i)

i = i + 1

print("done")

i = 0

if i < 5

print(i)

i = i + 1

print("done")

True False

Using Loops in Algorithms

Now that we know the basics of how loops work, we need to determine how
to write a loop to produce a wanted algorithm. Usually we use loops in
algorithms when we want to repeat an action.

First, we need to identify the parts of the repeated action that change in
each iteration. This will become the loop variable(s) that is updated in the
loop body.

To use this loop variable, we'll need to give it an initial value, a way to
update, and a time to end the loop. This last part can also be thought of as
when to keep looping.

Loop Variables - Example

In our 1-to-10 example, we want to start the variable at 1, and end after it
has printed 10. So we set num = 1 at the beginning of the loop and continue
looping while num <= 10.

Each number we print is one apart from the previous, so we'll want to set
the variable to the next number (num + 1) at each iteration.

num = 1
while num <= 10:

print(num)
num = num + 1

Activity: print even numbers

You want to print the even numbers from 2 to 100. What is your loop
variable, and what are the start/end/update values?

Identify these values, then use them to write out the code for the loop.

Loops and Algorithms – Loop Body

Setting up a loop can depend on more than just
a single loop variable. For example, say we want
to find the sum of the numbers from 1 to 10.
How do we do this?

We need to keep track of two different
numbers- the current number we're adding, and
the current sum. Both numbers will need to be
updated inside the loop body! However, only
one (the current number) needs to be checked
in the condition.

Note- when updating multiple variables in a
loop, order matters. If we set num = num + 1
first, it will change the value held in result!

result = 0

num = 1

while num <= 10:

result = result + num

num = num + 1

print(result)

Tracing Loops

Sometimes it gets difficult to track what
a program is doing when we add in
loops. We can make this simpler by
manually tracing through the values in
the variables at each step of the code,
including each iteration of the loop.

result = 0

num = 1

while num <= 10:

result = result + num

num = num + 1

print(result)

step result num

pre-loop 0 1

iteration 1 1 2

iteration 2 3 3

iteration 3 6 4

iteration 4 10 5

iteration 5 15 6

iteration 6 21 7

iteration 7 28 8

iteration 8 36 9

iteration 9 45 10

iteration 10 55 11

post-loop 55 11

Loops and Algorithms – Loop Variables

It isn't always obvious how the start, end, and
update values of a loop variable should work.
Sometimes you need to think through an
example to make it clear!

For example: let's say we want to simulate a
zombie apocalypse. Every day, each zombie will
find a human and bite them, turning them into
a zombie. If we start with just one zombie, how
long does it take for the whole world (7.5 billion
people) to turn into zombies?

Your start value is 1. Your end value is when the
number of zombies is greater than the
population. And your update value is doubling
the number of zombies every day! A separate
variable can be used to count the number of
days passed.

zombieCount = 1

population = 7.5 * 10**9

daysPassed = 0

while zombieCount < population:

zombieCount = zombieCount * 2

daysPassed = daysPassed + 1

print(daysPassed)

Nesting in While Loops

We showed previously how we can nest if
statements in other if statements to combine
them together. We can do the same thing with
while loops!

For example, let's say we want to make ascii art.
Specifically, let's write code to produce the
following printed string:

x-x-x
-o-o-
x-x-x
-o-o-
x-x-x

We can make a loop that iterates over the row
we're printing. We can decide whether to print
the x line or the o line based on the value of the
loop variable. If it's even (0, 2, and 4) we'll print
x; if it's odd (1 and 3) we'll print o.

row = 0

while row < 5:

if row % 2 == 0:

print("x-x-x")

else:

print("-o-o-")

row = row + 1

Learning Goals

Use programming to specify algorithms to computers

• Use while loops to repeat actions until a certain condition is met

• Use nesting of statements to create complex control flow

