
Class:- B.Sc./B.A. (Sem-III) Name of Teacher:- Hemant Kumari

Subject:- Mathematics, Name of Paper: Advanced Calculus- & Statics

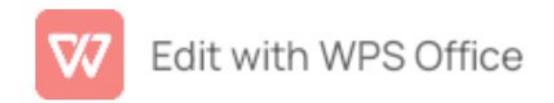
Sr. No.	Date(Weekly)	Subject related syllabus
1	1-5 Sep.	Limit and Continuity of Functions of several variables. Differentiability of real-valued functions of two variables.
2	7-12 Sep.	Partial differentiation, Jacobians and their properties, Schwarz's & Young's theorems.
3	14-19 Sep	Euler's theorem on homogenous functions. Taylor's theorem for functions two variables and error estimation.
4	21-26 Sep	Maxima and Minima, Lagrange's multiplier method.
5	28 Sep to 3 Oct.	Double and Triple Integrals, Change of order of integration in double integrals, Change of variables.
6	5-10 Oct	Applications to evaluation of areas, Volume, Centre of
		Gravity and Moments of Inertia
7	12-17 Oct.	The previous knowledge of the students in Calculus of one variable should lead to effective strategy in the introduction of the concepts of several variables
8	26-31 Oct.	Statics: Basic notation, Newton Laws of motion, system of two forces, parallelogram law of forces, resultant of two collinear forces, resolution of forces, moment of a force.
9	2-7 Nov.	Couple, theorem on moments of a couple, coplanar forces,
10	8-14 Nov.	Resultant of three coplanar concurrent forces, theorem of
		resolved parts, resultant of two forces acting on a rigid
		body.
11	16-21 Nov.	Varignon's theorem, generalized theorem of moments.
12	23 Nov. to 3 Dec.	Revision and M.S.T. Exam.

Class:- B.Sc./B.A. (Sem- IV) Name of Teacher:- Hemant Kumari

Subject :- Mathematics. Name of Paper:- Numerical Methods & Dynamics

Sr. No.	Date(Weekly)	Subject related syllabus
1	1-6 Feb.	SECTION -A Bisection Method, Regula-falsi method, Sectant method, Fixed - point iteration.
2	8-13 Feb.	Newton-Raphson method and convergence of Secant, Newton-Raphson method and fixed-point iteration.
3	15-20Feb.	Pivoting strategies, Partial Pivoting, Gauss-Elimination, Gauss Jordan and Triangularisation method.
4	22-27 Feb.	Jacobi Method, Gauss Seidel Method. SECTION-B
		Interpolation: Finite differences.
5	1-6 March	Divided differences, Newton Gregory Forward and Backward formula,
6	8-13 March	Lagrange's formula, Newton's formulae, Central Differences, Stirling, Bessel's and Everett's formulae, Error in linear and quadratic interpolation.
7	15-20 March	Motion of a particle with constant acceleration, acceleration of falling bodies, motion under gravity.
8	22 Mar to3 Apr.	Motion of a body projected vertically upward, motion of a two particles connected by a string, motion along a smooth inclined plane.
9	5-17 April.	Constrained motion along a smooth inclined plane. Variable acceleration, Simple harmonic motion, elastic string, simple pendulum.
10	19-24 April	Revision
11	26 April to 4May	M.S.T.

Class:- B.Sc./B.A. (Sem- I) Name of Teacher:- Hemant Kumari

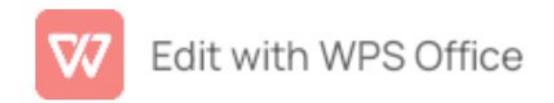

Subject :- Mathematics. Name of Paper ;- Calculus-1 & Linear Algebra

Sr. No.	Date(Weekly)	Subject related syllabus
1	1-5 Sep.	Differential Calculus: € -Gdefinition of the limit of a function. Basic properties of limit``
2	7-12 Sep.	Continuou`` functions and classification of discontinuities. Differentiability, Derivative of nth order
3	14-19 Sep	Leibnitz theorem, Asymptotes. Test for concavity and c`onvexl{y
4	21-26 Sep	Poims of In flexion, Tracing of Cui.Yes with y'and y''(Standard curves in Cartesian form without use of Grapher).
5	28 Sep to 3 Oct.	Functions of several variables: Limits, continuity and differentjability of two varl'ables.
6	5-10 Oct	Partial derivatives and its Linearization, Chain rule, Partial deriva[ive with c()n``trtiilied variable`
7	12-17 Oct.	`. Homogeneous func[lons, Euler theorem and its applications, Extreiiie v£`lue` and ``addle point``, Lagrange multiplier`,
8	26-31 Oct.	Taylor's theorem and It`` linear ;ind quadratic approxuTta[ion.
9	2-7 Nov.	I:li.meiitary operation on matrices, Inverse of a matrix using Gauss Jordan Method. Linear independence of row and column vectors,
10	8-14 Nov.	Row rank, Column rank and their cquivaleiice Eigen values. Eigen vectors and the characteristic equation of a matrix, Diagonalization`
11	16-21 Nov.	Cayley-Hamilton theorem and its use in finding inverse of a matrix, Consistency of a system of. linear equations.
12	23 Nov. to 3 Dec.	Revision & M.S.T.

Class :- B.Sc./B.A. (Sem-II) Name of Teacher:- Hemant Kumari

Subject :- Mathematics. Name of Paper;- Calculus-2& Analytic Geometry

Sr. No.	Date(Weekly)	Subject related syllabus
1	1-6 Feb.	Double integrals, Double integrals in Polar Form, Change of order and change of variable in double integral.
2	8-13 Feb.	Triple integrals in Rectangular co-ordinates. Triple integrals in Cylindrical and Spherical co-ordinates.
3	15-20Feb.	Applications to evaluation of Areas, Volume, Centre of Gravity and Moments of Inertia.
4	22-27 Feb.	Vectors in the plane, Cartesian Co-ordinates and vectors in spaces, Dot and cross products. Lines and planes in space.
5	1-6 March	Line integrals, vector fields, work circulations and flux, Path independence, Potential Functions and Conservative Fields.
6	8-13 March	Green theorem in Plane, surface area and surface integrals, Stokes Theorem and the divergence theorem.
7	15-20 March	Section-B Sphere: Section of a sphere by a plane. sphere through a given circle.
8	22 Mar to3 Apr.	Intersection of a line and sphere, tangent line, tangent plane, angle of intersection of two spheres and condition of orthogonality.
9	5-17 April.	Cone: general second degree equation of a cone, its intersection with a plane and with a line, enveloping cone, right circular cone, the cone $ax^2 + by^2 + cz^2 = 0$
10	19-24 April	Cylinder: enveloping cylinder, right circular cylinder.
11	26 April to 4May	Revision
12	1-6 Feb.	M.S.T.



Class :- B.Sc./B.A. (Sem-V) Name of Teacher:- Hemant Kumari

Subject :- Mathematics. Name of Paper;- Mathematical Method-1 &

Discrete 1

Sr. No.	Date(Weekly)	Subject related syllabus
1	1-5 Sep.	Fourier series: Fourier series, Theorems, Dirichlet's conditions, Fourier series for even and odd functions.
2	7-12 Sep.	Half range Fourier series, Other forms of Fourier series.
3	14-19 Sep	Laplace transforms: Definition of Laplace transform, linearity property- Piecewise continuous function. Existence of Laplace transform.
4	21-26 Sep	Functions of exponential order and of class A. Firstand second shifting theorems of Laplace transform, Change of scale property.
5	28 Sep to 3 Oct.	Laplace transform of derivatives, Initial value problems, Laplace transform of integrals.
6	5-10 Oct	Multiplication by t, Division by t, Laplace transform of periodic functions and error function, Beta function and Gamma functions.
7	12-17 Oct.	Definition of Inverse Laplace transform, Linearity property, First and second shifting theorems of inverse Laplace transform, Change of scale property.
8	26-31 Oct.	Division by p, Convolution theorem, Heaviside's expansion formula (with proofs and applications).
9	2-7 Nov.	SECTION-B Graphs and Planar Graphs-Basic Terminology. Multigraphs. Weighted Graphs. Paths and Circuits Shortest paths. Eulerian Paths and Circuits. Travelling Salesman Problem.
10	8-14 Nov.	Planar Graphs. Trees. Definition and Examples of Finite State Machines-Equivalent Machines and Finite State Machines as Language Recognizers.
11	16-21 Nov.	Revision.
12	23 Nov. to 3 Dec.	M.S.T. Exam.



Class :- B.Sc./B.A. (Sem-VI) Name of Teacher:- Hemant Kumari

Subject:- Mathematics. Name of Paper;- Mathematical Method-2 &

Discrete 2

Sr.	Date(Weekly)	Subject related syllabus
No.	1654	O
1	1-6 Feb.	Section- A Fourier transforms : Dirichlet's conditions,
		Fourier integral formula (without proof),
2	8-13 Feb.	Fourier transform, Inverse Theorem for Fourier transform. Fourier sine and cosinetransforms and their inversion
	0-13 T eb.	formulae. Linearity property of Fourier
		transforms, Change of scale property, Shifting theorem,
		Modulation theorem.
3	15-20Feb.	Convolution theorem of Fourier transforms, Parseval's
		identity, Finite Fourier sine transform. Inversion formula
		for sine transform, Finite Fourier cosine Transform,
		Inversion formula for cosine transform.
4	22-27 Feb.	Section- B Applications of Laplace and Fourier
		transforms: Applications of Laplace transforms to the
		solution of ordinary differential equations with constant
		coefficients.
5	1-6 March	Variable coefficients, Simultaneous ordinary differential
		equations, Second order Partial differential equations
		(Heat, wave and laplace).
6	8-13 March	SECTION-B(DISCRETE-2)
		Brief review of Groups and Rings. Boolean Algebras-
		Lattices and Algebraic Structures.
7	15-20 March	Duality. Distributive and Complemented Lattices. Boolean
		Lattices and Boolean Algebras.
8	22 Mar to3 Apr.	Boolean Functions and Expressions. Design and
		Implementation of Digital Networks.
9	5-17 April.	Prepositional Calculus.
10	19-24 April	Switching Circuits.
11	26 April to 4May	Revision
12	1-6 Feb.	M.S.T.

